
Timetable API
Version 2.3.0

20 October 2016

Introduction

Hello and welcome
Hi and welcome to the fourth release of Version 2 of the PTV Timetable API. The API has been
created to provide public transport timetable data to the public in the most dynamic and efficient
way.

By providing an API, PTV hopes to maximise both the opportunities for re-use of public transport
data and the potential for innovation.

Note A new Version 3 of the PTV Timetable API has also been released, providing
the same data as Version 2 in a different way. Documentation for Version 3 is
available online via Swagger.

All references to the PTV Timetable API in this document are to Version 2 of the
API, unless otherwise stated.

Licence

Ownership of intellectual property rights in the PTV Timetable API Documentation

Unless otherwise noted, copyright (and any other intellectual property rights, if any) in this
publication (PTV Timetable API Documentation) is owned by Public Transport Victoria (referred
to below as PTV).

Don’t use our IP

You may use the data accessed by the API (PTV Timetable API Data) as permitted by the below
licence, and you may use the PTV Timetable API Documentation to access the PTV Timetable
API Data, but you are not permitted to use PTV’s intellectual property (including copyright,
registered and unregistered trade marks) for any other purpose.

Creative Commons licence

The PTV Timetable API Data is licensed under a Creative Commons Attribution 4.0 International
Licence.

Creative Commons Attribution 4.0 International Licence is a standard form licence agreement that
allows you to copy, distribute, transmit and adapt the PTV Timetable API Data provided that you
attribute the work. Both a summary of the licence terms and the full licence terms are available
online from Creative Commons.

PTV requests that you attribute the PTV Timetable API Data using the following wording: Source:
Licensed from Public Transport Victoria under a Creative Commons Attribution 4.0 International
Licence.

Page 2 of 113

http://timetableapi.ptv.vic.gov.au/swagger/ui/index
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/legalcode

Don’t pretend to be us

When you use the PTV Timetable API Data, don’t pretend to be PTV or claim that PTV has
endorsed your product or service.

Disclaimer

Your use is your responsibility

The PTV Timetable API Data is provided “as is” and PTV is not liable for how you use this data,
how third parties use or rely on this data or any errors contained within the data. You are
responsible for determining whether the PTV Timetable API Data is suitable for your particular
usage and purposes.

What you get with the PTV Timetable API
Our API gives you direct access to the PTV timetable data. The API allows you to query locations
for timetable, line and stop data for all train, tram and bus, V/Line rail and coach, and Night
Network1 services.

Real-time data for metropolitan train, tram and bus services is also returned (where that data is
made available to PTV). As at the date of this document, work to deliver real-time data for
regional bus is continuing progressively.

The API also includes access to disruption information and myki ticket outlet data.

New The PTV Timetable API now includes the following:

• real-time data for metropolitan train services

• more data in relation to train departures in all APIs returning timetable
data

• support for a HTTPS endpoint

For more information about what is new or has changed with the PTV
Timetable API, check out the Release Notes at Appendix 2.

Note For the PTV Timetable API, the following definitions apply:

real-time data are the times that a service is predicted to be at each of its stops
based on the location of the service at the time of the request and other factors

stop is any train station, tram stop or bus stop

For more information about public transport terminology, check out the Guide to
understanding public transport data and the Glossary.

1 Night Train and Night Tram data are included in metropolitan train and tram services data,
respectively, whereas Night Bus (which replaced NightRider) is a separate route type.

 Page 3 of 113

Scheduled train timetable data is updated daily. All other static data is updated weekly; it
takes into account any planned timetable changes, for example, due to holidays or planned
disruptions, but any changes to the timetable made by tram, bus, or V/Line operators on the day
of operation will not be picked up.

The PTV timetable API is the same API currently used by PTV for our smartphone apps. PTV
enhances these products by integrating its timetable data with a geocoder API (which allows for
address searching) and PTV’s own journey planner service.

Note The following are not included in the PTV Timetable API:

• An address geocoding API – available through search providers such
as HERE, Google or OpenStreetMap

• The PTV journey planner – this is not raw data but rather a service PTV
provides

Do’s and don’ts
Timetables, stops, lines and even ticket outlets change frequently so to get the most out of the
PTV Timetable API, we recommend you use it dynamically. That’s the only way to ensure you’re
accessing the most up-to-date data and providing it to your audience through the app or service
you create. It’s also the only way to access real-time departure data.

Note Do use the API dynamically to get the most up-to-date data for your audience
and to access real-time data.

Don’t cache the data To access static dumps of timetable data check out
the PTV Timetable and Geographic Information – GTFS on the DataVic website.

Don’t hammer our servers. Don’t use the API to make multiple requests for
large sets of data in short periods of time. PTV may revoke the registration key of
any developers who do this without notice.

Audience
The PTV Timetable API is for everyone. All members of the public, whether they are students,
hobbyist app developers or companies, can access PTV timetable data using our API.

PTV assumes that you know how to use APIs and does not provide instructions on how to code
in any specific programming languages.

Note PTV does not provide technical support for the API.

All information required to use the API is included in this document.

 Page 4 of 113

https://developer.here.com/geocoder
https://developers.google.com/maps/documentation/geocoding/
http://wiki.openstreetmap.org/wiki/Main_Page
https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs

What’s in the document
Getting started

> First steps: getting your key

> Quickstart Guide

> Quick Reference Guide

> Use Case Maps

Overview

> Main features of the API

> API Structure

> API Interface

> Errors

Note
Need help?
Check the Glossary for
explanations of common terms
and acronyms

Take a look at the Guide to
understanding public transport
data – it’s been designed to help
you make sense of the data that
you access through the API

Try the FAQs – it has answers to
some common questions

Reference

> JSON object structure

> A description of the request and response, data specification and examples for each API
below:

• Health Check

• Stops Nearby

• Transport POIs by Map

• Search

• Lines by Mode

• Stops on a Line

• Stop Facilities

• Stop Facilities (GTFS Input)

• Broad Next Departures

• Specific Next Departures

• Specific Next Departures (GTFS input)

• Stopping Pattern

 Page 5 of 113

• Disruptions

> Data Quality Statement

> Sample code for creating a signature

> Release Notes

 Page 6 of 113

Getting started

First steps: getting your API key and user ID
You’ll need to pass along a signature and a user ID – or “devid” - with every request using HTTP
GET.

To calculate the signature, you’ll need the request, which includes your user ID, and an API
key.

The key consists of a 128bit GUID.

Note The key and the request (including user ID) are used to calculate a signature
for every request.

How to register for an API key and user ID

> Send an email to APIKeyRequest@ptv.vic.gov.au with the following information in the subject
line of the email:

• “PTV Timetable API – request for key”

> Once we’ve got your email request, we’ll send you an API key and a user ID by return email.

Note A high volume of requests may result in a delay in providing you with your key
and user ID. We’ll try to get it to you as soon as we can.

> We’ll also add your email address to our API mailing list so we can keep you informed about
the API.

Note PTV does not provide technical support on the API.

The “APIKeyRequest” email address is only used to send you the key and
user ID, as well as any relevant notifications. Only requests for keys will be
responded to.

Note We’ll be monitoring the use of our API to make sure our mailing list is current
and sustainable. If you haven’t used the API for over 3 months, we may
disable your key and remove you from the list – but you can always register
for a new key if you need one.

 Page 7 of 113

mailto:APIKeyRequest@ptv.vic.gov.au?subject=PTV%20Timetable%20API%20-%20request%20for%20key

Privacy

Your email address is the only bit of information about you that PTV will hold in its register. You
can view PTV’s privacy policy online.

Quick start guide
Once you have obtained your API key and user ID you can get started. The first thing you need to
do is to calculate a signature.

How to calculate a signature

> The signature value is a HMAC-SHA1 hash of the completed request (minus the base URL
but including your user ID, known as “devid”) and the API key:

• signature = crypto.HMACSHA1(request,key)

> The calculation of a signature is based on a case-sensitive reading of the request message.
This means that the request message used to calculate the signature must not be modified
later on in your code or the signature will not work. If you do modify the case of the request
message, you will need to calculate a new signature.

For example, “http://timetableapi.ptv.vic.gov.au/v2/healthcheck?devid=ABCXYZ” and
“http://timetableapi.ptv.vic.gov.au/v2/HealthCheck?devid=ABCXYZ” require different
signatures to be calculated; the same signature will not work for both requests.

> The signature itself is also case-sensitive

Note Example of a request message for signature calculation:

The request URL for the Stops Nearby API is:

base URL/v2/nearme/latitude/%@/longitude/%@?devid=%@&signature=%@

A sample request message used to calculate a signature would be:

http://timetableapi.ptv.vic.gov.au/v2/nearme/latitude/-
37.82392124423254/longitude/144.9462017431463?devid=0000001

Refer to Appendix 1 for some sample code for calculating a signature.

Performing the Health Check

The first API you need to call is the Health Check.

The Health Check will test a number of the key services that deliver the PTV Timetable API and
let you know if there are any problems with connectivity, availability or reachability.

It will also test the time on your system to make sure that your clock is in sync with our clock.

 Page 8 of 113

http://www.ptv.vic.gov.au/privacy

Note For more information on which services are tested by the Health Check API
check out the section on Errors and the Reference.

The output is in JSON format.

Health Check request URL:

http://timetableapi.ptv.vic.gov.au/v2/healthcheck?timestamp=%@&devid=%@&signature=%@

Note “%@” in the request URL represents a parameter.

Parameters

timestamp = optional: the date and time of the request in ISO 8601 UTC format
e.g. 2014-02-28T05:24:25Z

devid = optional: the user ID supplied in your email from PTV

signature = optional: the customised message digest calculated using the method in
the Quick start guide

Note While all parameters for this API are optional, if you don’t include them the
securityTokenOK and clientClockOK response will return “false”.

Response output:

{

 "securityTokenOK": boolean,

 "clientClockOK": boolean,

 "memcacheOK": boolean,

 "databaseOK": boolean,

}

where a “true” value indicates service connectivity and availability, and “false” indicates a
problem. For more information on this API, check out Errors and the Reference.

Congratulations

Once you’ve calculated a signature and performed the health check successfully you are ready to
access the data available through the PTV Timetable API.

All systems are go!

 Page 9 of 113

http://www.iso.org/iso/home/standards/iso8601.htm
http://en.wikipedia.org/wiki/ISO_8601%23UTC

Note If you are using the PTV Timetable API in conjunction with the PTV GTFS
dataset, please note the following:

• the Specific Next Departures (GTFS Input) API allows you to input data
from the PTV GTFS dataset and returns the same response as Specific
Next Departures, including real-time data (where it is available)

• the new Stop Facilities (GTFS Input) API allows you to input data from
the PTV GTFS dataset and returns the same response as the new Stop
Facilities API

• the public transport data accessed through the PTV Timetable API and
in the PTV GTFS dataset includes attributes with the same name that
hold different data. For example, “stop_id” exists in both datasets but
an API stop_id is different to a GTFS stop_id

Only the Specific Next Departures (GTFS Input) API and the new
Stop Facilities (GTFS Input) API use GTFS data – no other calls in the
PTV Timetable API accept GTFS inputs.

Quick reference guide
The PTV Timetable API lets you access stop, line, timetable and disruption data for all
metropolitan and regional services in Victoria. Real-time data for metropolitan train, tram and bus
services is also returned (where that data is made available to PTV). As at the date of this
document, work to deliver real-time data for regional bus is continuing progressively.

The APIs are as follows:

Health Check

This API returns a health report on the timely availability, connectivity and reachability of the key
services that deliver our timetable data to web clients.

Note For more information on which services are tested by the Health Check API
check out the section on Errors and the Reference.

Stops Nearby

The Stops Nearby API returns up to 30 stops nearest to a specified coordinate.

Transport POIs by Map

This API returns a list of transport points of interest (POIs) in a region described by latitude and
longitude coordinates. POIs can be any or all of stations, stops or myki ticket outlets.

Search

The Search API returns all stops and lines that include the search term.

Lines by Mode

The Lines by Mode API returns the lines for a selected mode of transport.

 Page 10 of 113

Stops on a Line

This API returns all the stops along a specific line.

Stop Facilities

The Stop Facilities API returns facility information relating to a specific metropolitan train or V/Line
train station, including location, amenity and accessibility details.

Stop Facilities (GTFS Input)

The Stop Facilities (GTFS Input) API allows you to input data from the PTV GTFS dataset, and
returns the same data as the Stop Facilities API.

Broad Next Departures

This API returns departure times from a stop, irrespective of what line the service is on or in what
direction the service is running. The API also returns any disruption information relating to the
relevant line(s), where applicable.

Specific Next Departures

The Specific Next Departures API returns all departure times from a stop for a specific line and in
a specific direction. The API also returns any disruption information relating to the relevant line,
where applicable.

Specific Next Departures (GTFS Input)

The Specific Next Departures (GTFS Input) API allows you to input data from the PTV GTFS
dataset and returns the same data as the Specific Next Departures API.

Stopping Pattern

The Stopping Pattern API returns all the times for stops that a particular vehicle will stop at on a
specific service run (that is, specific line, direction and point in time). The API also returns any
disruption information relating to the relevant line, where applicable.

Disruptions

This API returns planned and unplanned disruptions information for one or more modes of
transport.

 Page 11 of 113

Use case maps
To give you a taste of what you can do with the PTV Timetable API, we’ve created a small list of use case maps that show the sequence of
APIs required to obtain particular information.

Note The maps below are for illustrative purposes only and only show the data outputs that are used as inputs into the next API. They don’t
show all the inputs and outputs for each API. For more detailed information on the APIs, check out the section on the API Structure as
well as the Reference.

I want to…

…find myki ticket outlets in my
area

Health
Check

Transport
POIs by Map

…see all lines for a particular
mode

Health
Check Lines by Mode

…see all stops near me on a
map or list

Health
Check Stops Nearby

 Page 12 of 113

…see on a map which bus stops
are near my local train station

Health
Check

Transport
POIs by Map

…see a list of disruptions to
specific modes of transport

Health
Check Disruptions

…find out which lines travel
through a stop near me and
where they go

Health
Check Stops Nearby Broad Next

Departures
Stops on a

Line

route_type
stop_id

route_type
line_id

Stops Nearby

 Page 13 of 113

…get the real-time data for a
specific tram service using the

data outputs from the
PTV GTFS dataset

Health
Check

Specific Next
Departures

(GTFS Input)

...find out if there is parking at
my local station

Health
Check Stop Facilities

stop_id
route_type

Search

 Page 14 of 113

…get the next three departure
times for a specific service from
a selected stop

Health
Check

Broad Next
Departures

Specific Next
Departures

route_type
line_id

route_type
stop_id
line_id

direction_id
Lines by Mode Stops on a

Line

Option 1

Option 2

route_type
stop_id

Transport
POIs by Map

Search

Stops Nearby

or

or

or

or

 Page 15 of 113

…get the next ten departures
from my local stop

Health
Check

Broad Next
Departures

route_type
line_id

Lines by Mode Stops on a
Line

Option 1

Option 2

route_type
stop_id

Transport
POIs by Map

Search

Stops Nearby

or

or

or

or

 Page 16 of 113

Overview

Main features

Stateless

Public transport timetable data is fast-changing, time-based data so our API is REST-like (and
therefore stateless).

Format

The API functions via a request and response format whereby parameters are passed in a
request and a response with the relevant data received accordingly.

Output

The responses you receive from the API will be represented in JSON. The format is that of a
JSON object with a name for each attribute.

For more information on JSON, refer to the JSON website.

Security support (NEW)

The PTV Timetable API now supports a HTTPS endpoint, in addition to HTTP.

Compression support

The PTV Timetable API provides compression support for gzip and deflate requests. If your
request includes a header that gzip or deflate compression is accepted, you'll get a compressed
response.

This will reduce the overall content size of the response, meaning that the response can be
downloaded faster and will use less network data.

For more information on gzip and deflate compression, refer to the Code Project website.

Note Example of request messages using compression:

• Accept-Encoding: gzip in the request header returns a zipped
response (indicated by the response header: Content-Encoding:
gzip)

• Accept-Encoding: deflate in the request header returns a deflated
response (indicated by the response header: Content-Encoding:
deflate)

• You can use any combination such as: Accept-Encoding: gzip, deflate
– preference will be given to gzip

 Page 17 of 113

http://www.json.org/
http://www.codeproject.com/Tips/751995/What-is-Gzip-Deflate-compression-and-why-do-you-ne

Authentication

A unique API key and user ID is used to calculate a signature for every request that you make.

For more information about how to get a key and user ID and how to calculate a signature, check
out the Getting Started section.

DateTime and time zone

All DateTimes are stored and reported in UTC. The ISO8601 format (e.g. 2011-09-13T16:09:54Z)
is used throughout the API. The DateTimes are returned as strings since JSON does not have a
DateTime object in the specification.

Versioning

The PTV Timetable API uses semantic versioning.

The current version of the API is 2.3.0.

Note The API URL only uses the major part of the version number; this means
there is no change to the URL even though the minor part of the version number
has changed since our previous release, from 2.2.0 to 2.3.0.

Structure
The structure of the PTV Timetable API allows you to build information dynamically as you need
it, based on the output of each API called.

For example, the input for the Lines by Mode API includes a set of route_type data (the values of
which are provided to you in this document). The output, however, includes line_id data, which
you can pass through the Stops on a Line API to obtain stop_id data. You can then use the
stop_id data as an input to the Broad Next Departures API to obtain direction_id, run_id,
timetable and disruption data. These outputs can in turn be used as inputs into other APIs.

Note The Specific Next Departures (GTFS Input) API and the Stop Facilities
(GTFS Input) API take their inputs from the PTV GTFS dataset, however their
outputs are the same as the Specific Next Departures API and Stop Facilities
API respectively.

The summary table below is for illustrative purposes only – all API inputs and outputs are listed in
the Reference section.

API Inputs Outputs

Stops Nearby lat
lon
devid
signature

distance
suburb
transport_type
route_type
stop_id

 Page 18 of 113

http://en.wikipedia.org/wiki/ISO_8601%23UTC
http://www.iso.org/iso/home/standards/iso8601.htm
http://semver.org/

API Inputs Outputs

location_name
lat
lon

Transport POIs
by Map

poi (very similar to
route_type)
lat1
long1
lat2
long2
griddepth
limit
devid
signature

minLat
minLong
maxLat
maxLong
weightedLat
weightedLong
totalLocations
clusters
distance
suburb
transport_type, route_type / outlet_type
stop_id / business_name
location_name
lat
lon

Search search
devid
signature

distance
suburb
transport_type
route_type
stop_id
location_name
lat
lon
line_id
line_name
line_number
line_name_short
line_number_long

Lines by Mode mode (i.e. route_type)
name (optional)
devid
signature

transport_type
route_type
line_id
line_name
line_number
line_name_short
line_number_long

Stops on a Line mode (i.e. route_type)
line (i.e. line_id)
devid
signature

distance
suburb
transport_type
route_type
stop_id
location_name
lat
lon

 Page 19 of 113

API Inputs Outputs

Stop Facilities stop_id
route_type
location (optional)
amenity (optional)
accessibility(optional)

stop_id
stop_mode_id
stop_type
stop_type_description
suburb
postcode
municipality
municipality_id
primary_stop_name
road_type_primary
second_stop_name
road_type_second
bay_nbr
longitude
latitude
toilet
taxi_rank
car_parking
cctv
lighting
stairs
escalator
lifts
hearing_loop
tactile_tiles
accessible_ramp
accessible_parking
accessible_phone
accessible_toilet

 Page 20 of 113

API Inputs Outputs

Stop Facilities
(GTFS Input)

stop_point_id (i.e. GTFS
stop_id)
location (optional)
amenity (optional)
accessibility(optional)

stop_id
stop_mode_id
stop_type
stop_type_description
suburb
postcode
municipality
municipality_id
primary_stop_name
road_type_primary
second_stop_name
road_type_second
bay_nbr
longitude
latitude
toilet
taxi_rank
car_parking
cctv
lighting
stairs
escalator
lifts
hearing_loop
tactile_tiles
accessible_ramp
accessible_parking
accessible_phone
accessible_toilet

 Page 21 of 113

API Inputs Outputs

Broad Next
Departures

mode (i.e. route_type)
stop (i.e. stop_id)
limit
includeCancelled
(optional)
devid
signature

platform_number (NEW)
at_platform_now (NEW)
realtime_id
distance
suburb
transport_type
route_type
stop_id
location_name
lat
lon
linedir_id
direction_id
direction_name
line_id
line_name
line_number
line_name_short
line_number_long
run_id
num_skipped
destination_id
destination_name
status (NEW)
time_timetable_utc
time_realtime_utc
flags
disruption_id
title
url
description
status
type
publishedOn
lastUpdated
fromDate
toDate
service_time

 Page 22 of 113

API Inputs Outputs

Specific Next
Departures

mode (i.e. route_type)
line (i.e. line_id)
stop (i.e. stop_id)
directionid
limit
for_utc (optional)
includeCancelled
(optional)
devid
signature

platform_number (NEW)
at_platform_now (NEW)
realtime_id
distance
suburb
transport_type
route_type
stop_id
location_name
lat
lon
linedir_id
direction_id
direction_name
line_id
line_name
line_number
line_name_short
line_number_long
run_id
num_skipped
destination_id
destination_name
status (NEW)
time_timetable_utc
time_realtime_utc
flags
disruption_id
title
url
description
status
type
publishedOn
lastUpdated
fromDate
toDate
service_time

 Page 23 of 113

API Inputs Outputs

Specific Next
Departures
(GTFS Input)

mode (i.e.GTFS mode)
route_id (i.e. GTFS
route_id)
stop (i.e. GTFS stop_id)
direction (i.e. GTFS
direction_id)
limit
for_utc (optional)
includeCancelled
(optional)
devid
signature

platform_number (NEW)
at_platform_now (NEW)
realtime_id
distance
suburb
transport_type
route_type
stop_id
location_name
lat
lon
linedir_id
direction_id
direction_name
line_id
line_name
line_number
line_name_short
line_number_long
run_id
num_skipped
destination_id
destination_name
status (NEW)
time_timetable_utc
time_realtime_utc
flags
disruption_id
title
url
description
status
type
publishedOn
lastUpdated
fromDate
toDate
service_time

 Page 24 of 113

API Inputs Outputs

Stopping Pattern mode (i.e. route_type)
run (i.e. run_id)
stop (i.e. stop_id)
for_utc (optional)
devid
signature

platform_number (NEW)
at_platform_now (NEW)
realtime_id
distance
suburb
transport_type
route_type
stop_id
location_name
lat
lon
linedir_id
direction_id
direction_name
line_id
line_name
line_number
line_name_short
line_number_long
run_id
num_skipped
destination_id
destination_name
status (NEW)
time_timetable_utc
time_realtime_utc
flags
disruption_id
title
url
description
status
type
publishedOn
lastUpdated
fromDate
toDate
service_time

 Page 25 of 113

API Inputs Outputs

Disruptions modes
devid
signature

disruption_id
title
url
description
status
type
publishedOn
lastUpdated
fromDate
toDate
transport_type
route_type
line_id
line_name
line_number
line_name_short
line_number_long
linedir_id
direction_id
direction_name
service_time

Interface
You can access the PTV Timetable API through a HTTP or HTTPS interface, as follows:

base URL / version number / API name / query string

The base URL is either:

> http://timetableapi.ptv.vic.gov.au

or

> https://timetableapi.ptv.vic.gov.au

The version number, API name and query string are provided in the Reference section, under
each API.

Note “%@” in the request URL represents a parameter.

 Page 26 of 113

http://timetableapi.ptv.vic.gov.au/

Errors

Error trapping through Health Check

Calling the Health Check API at the start of each sequence of APIs flushes out any problems in
the systems provided by PTV.

A return of true or false for the following attributes reveals their status (where “true” means the
system is okay, and “false” indicates a problem):

securityTokenOK – i.e. your key/signature is working
(if it returns “false” check your logic and ensure you have a valid key)

clientClockOK – i.e. your clock is synchronised with our clock within three minutes
(this is for your information only; if it returns “false” it may affect the way
you present dates and times)

memcacheOK – performance cache is working well
(if it returns “false” your queries will be slow)

databaseOK – availability of the data
(if it returns “false” your queries won’t work)

For more information on the Health Check API, check out the Quick start guide and
the Reference section.

HTTP status codes

Since the PTV Timetable API uses a HTTP interface, any of the following standard HTTP status
codes may be returned:

200 – no error; system okay

403 – access denied (will be returned when the wrong signature is used)

404 – requested resource not found (check your URL, including parameters, is correct)

500 – internal server error (check your URL, including parameters, is correct)

For more information, you can check out the entry on HTTP status codes on Wikipedia.

Note Health Check doesn’t test the availability of real-time data as this is provided
to PTV via external systems.

PTV currently doesn’t test the availability of disruption information services.

 Page 27 of 113

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Reference

Note A HTML version of this Reference section is available on the PTV website.

JSON object structure
The diagrams below show the structure of the JSON objects returned from the API calls.

“values” (i.e.
timetable) object*

“values” (i.e.
timetable) object*

“platform”
“run”
time_timetable_utc
time_realtime_utc
flags
“disruptions”

“platform”
“run”
time_timetable_utc
time_realtime_utc
flags
“disruptions”

* Returned by Broad
Next Departures,

Specific Next
Departures, Specific

Next Departures (GTFS
Input) and Stopping

Pattern

* Returned by Broad
Next Departures,

Specific Next
Departures, Specific

Next Departures (GTFS
Input) and Stopping

Pattern

“locations” object*“locations” object*

* Returned by Transport
POIs by Map

* Returned by Transport
POIs by Map

“result” object*“result” object*

typetype

* Returned by Stops
Nearby and Search
* Returned by Stops
Nearby and Search

“direction” object“direction” object

linedir_id
direction_id
direction_name
“line”

linedir_id
direction_id
direction_name
“line”

“outlet” object*“outlet” object*

outlet_type
suburb
business_name
distance
location_name
lat
lon

outlet_type
suburb
business_name
distance
location_name
lat
lon

* Returned by Transport
POIs by Map (as a
“locations” object)

* Returned by Transport
POIs by Map (as a
“locations” object)

* Returned by Broad
Next Departures (as a
list after each applicable
timetable value), and by

Specific Next
Departures, Specific

Next Departures (GTFS
Input) and Stopping

Pattern (if applicable, as
a separate array after the

timetable values)

* Returned by Broad
Next Departures (as a
list after each applicable
timetable value), and by

Specific Next
Departures, Specific

Next Departures (GTFS
Input) and Stopping

Pattern (if applicable, as
a separate array after the

timetable values)

“disruptions” object*“disruptions” object*

disruption_id
title
url
description
status
type
publishedOn
lastUpdated
fromDate
toDate
service_time

disruption_id
title
url
description
status
type
publishedOn
lastUpdated
fromDate
toDate
service_time

“platform” object“platform” object

platform_number
at_platform_now
realtime_id
“stop”
“direction”

platform_number
at_platform_now
realtime_id
“stop”
“direction”

“stop” object*“stop” object*

distance
suburb
transport_type
route_type
stop_id
location_name
lat
lon

distance
suburb
transport_type
route_type
stop_id
location_name
lat
lon

* Returned by Stops
Nearby and Search (as a
“result” object), Transport

POIs by Map (as a
“locations” object) and

Stops on a Line

* Returned by Stops
Nearby and Search (as a
“result” object), Transport

POIs by Map (as a
“locations” object) and

Stops on a Line“run” object“run” object

transport_type
route_type
run_id
num_skipped
destination_id
destination_name
status

transport_type
route_type
run_id
num_skipped
destination_id
destination_name
status

“line” object*“line” object*

transport_type
route_type
line_id
line_name
line_number
line_name_short
line_number_long

transport_type
route_type
line_id
line_name
line_number
line_name_short
line_number_long

* Returned by Search (as a
“result” object) and Lines

by Mode

* Returned by Search (as a
“result” object) and Lines

by Mode

Page 28 of 113

https://ptv.vic.gov.au/about-ptv/ptv-data-and-reports/digital-products/ptv-timetable-api/

“amenity” object“amenity” object

toilet
taxi_rank
car_parking
cctv

toilet
taxi_rank
car_parking
cctv

* Returned by Stop
Facilities and Stop

Facilities (GTFS
Input)

* Returned by Stop
Facilities and Stop

Facilities (GTFS
Input)

“stop facilities”
object*

“stop facilities”
object*

stop_id
stop_mode_id
stop_type
stop_type_description
“location”
“amenity”
“accessibility”

stop_id
stop_mode_id
stop_type
stop_type_description
“location”
“amenity”
“accessibility”

* Returned by
Disruptions

* Returned by
Disruptions

mode object*mode object*

“accessibility” object“accessibility” object

lighting
stairs
escalator
lifts
hearing_loop
tactile_tiles
“wheelchair”

lighting
stairs
escalator
lifts
hearing_loop
tactile_tiles
“wheelchair”

“wheelchair” object“wheelchair” object

accessible_ramp
accessible_parking
accessible_phone
accessible_toilet

accessible_ramp
accessible_parking
accessible_phone
accessible_toilet

“lines” object“lines” object

transport_type
route_type
line_id
line_name
line_number
line_name_short
line_number_long
“direction”

transport_type
route_type
line_id
line_name
line_number
line_name_short
line_number_long
“direction”

“direction” object“direction” object

linedir_id
direction_id
direction_name
service_time

linedir_id
direction_id
direction_name
service_time

disruption
information object

disruption
information object

disruption_id
title
url
description
status
type
publishedOn
lastUpdated
fromDate
toDate
“lines”

disruption_id
title
url
description
status
type
publishedOn
lastUpdated
fromDate
toDate
“lines”

“gps” object“gps” object

longitude
latitude
longitude
latitude

“location” object“location” object

suburb
“gps”
postcode
municipality
municipality_id
primary_stop_name
road_type_primary
second_stop_name
road_type_second
bay_nbr

suburb
“gps”
postcode
municipality
municipality_id
primary_stop_name
road_type_primary
second_stop_name
road_type_second
bay_nbr

Page 29 of 113

Health Check

Version Number

2.3.0

Description

A check on the timely availability, connectivity and reachability of the services that deliver
security, caching and data to web clients. A health status report is returned.

Note It’s good practice to call the Health Check API every time you make a sequence
of calls to the API.

Request URL

base URL
/v2/healthcheck?timestamp=%@&devid=%@&signature=%@

Parameters

timestamp = optional: the date and time of the request in ISO 8601 UTC format
e.g. 2013-11-13T05:24:25Z

devid = optional: the user ID supplied in your email from PTV

signature = optional: the customised message digest calculated using the method in
the Quick start guide

Note While all parameters for this API are optional, if you don’t include them the
securityTokenOK and clientClockOK response will return “false”.

Response

The response is made up of the following JSON objects:

securityTokenOK boolean
– indicates whether your key is valid/signature is calculated correctly

Note Health Check doesn’t test the availability of real-time data as this is provided
to PTV via external systems.

PTV currently doesn’t test the availability of disruption information services.

 Page 30 of 113

http://www.iso.org/iso/home/standards/iso8601.htm
http://en.wikipedia.org/wiki/ISO_8601%23UTC

clientClockOK boolean
– indicates whether your clock is synchronised with our clock within
3 minutes

memcacheOK boolean
– indicates status of the performance cache

databaseOK boolean
– indicates availability of the data

Example request

http://timetableapi.ptv.vic.gov.au/v2/healthcheck?timestamp=2014-01-22T03:28:33Z

Example response

{

 "securityTokenOK": false,

 "clientClockOK": false,

 "memcacheOK": true,

 "databaseOK": true,

}

Note Refer to Errors for more information on using Health Check to trap errors.

Returned “false” as no signature was used

The PTV server time is not synchronised with the
time provided by the developer so returned “false”

Returned “true” so performance cache
is okay and data is available

 Page 31 of 113

Stops Nearby

Version Number

2.3.0

Description

Stops Nearby returns up to 30 stops nearest to a specified coordinate.

Applicable stops are returned as a collection in the JSON format.

Request URL

base URL

/v2/nearme/latitude/%@/longitude/%@?devid=%@&signature=%@

Parameters

latitude = prescribed latitude, expressed in decimal degrees.
e.g. -37.82392124423254

longitude = prescribed longitude, expressed in decimal degrees.
e.g. 144.9462017431463

devid = the user ID supplied in your email from PTV

signature = the customised message digest calculated using the method in the Quick start
guide

Response

Returns an array of JSON “result” objects for which the “type” equals “stop”. A “stop” object is
embedded within each “result”. Stops are ordered by distance.

For more information on the data structures, check out the JSON object structure.

Note “stops” includes train stations as well as tram, bus and coach stops.

Note There are no spatial constraints on how Stops Nearby retrieves stops. It will
always return up to 30 stops near the passed latitude and longitude coordinates,
even if some of those stops are (relatively) far away.

 Page 32 of 113

The “stop” object has these attributes:

distance decimal number
– the distance of the stop from the location entered in the request
– e.g. 4.08647838E-06

suburb string
– the suburb name
– e.g. “Belgrave”

transport_type string
– the mode of transport serviced by the stop
– e.g. can be either “train”, “tram”, “bus”, “vline” or “nightrider”

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “3”

stop_id numeric string
– the unique identifier of each stop
– e.g. “2825”

location_name string
– the name of the stop based on a concise geographic description
– e.g. "20-Barkly Square/115 Sydney Rd (Brunswick)"

Note The array of stops returned is ordered by distance.

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

Note For train stations, the location_name is the name of the station – e.g. “Belgrave
Station”.

For tram and bus stops, it is a concise geographic descriptor that is determined
by a hierarchy of available stop information. The hierarchy is:

Landmark > Cross Street > Travel Street

Depending on the content of those fields the location name can be
Landmark/Travel Street, or Cross Street/Travel Street, or just Travel Street,
together with the suburb. Tram stop location names also include a stop number
(which is the number that appears on the signage at the stop or in the timetable;
not the same as the “stop_id”).

 Page 33 of 113

lat decimal number
– geographic coordinate of latitude
– e.g. -37.81603

lon decimal number
– geographic coordinate of longitude
– e.g. 144.9824

Example use case

Janelle is creating an app for tourists in Melbourne and wants to use the PTV Timetable API to
access public transport data.

First off, she wants tourists to be able to see all public transport stops near them on a list or on a
map, no matter where they are, so Janelle uses the Stops Nearby API.

Example request

http://timetableapi.ptv.vic.gov.au/v2/nearme/latitude/-
37.817993/longitude/144.981916?devid=4&signature=20F0ED441F888A604A7760BA42ECE943
33AD279BD

Example response

[
 {
 "result": {
 "distance": 6.906921E-06,
 "suburb": "East Melbourne",
 "transport_type": "train",
 "route_type": 0,
 "stop_id": 1104,
 "location_name": "Jolimont-MCG ",
 "lat": -37.81653,
 "lon": 144.9841
 },
 "type": "stop"
]

Note GPS coordinates for stops are mostly to 6 decimal places. This identifies a
location to sub-metre accuracy.

“result” object

type of “result”
= “stop”

Note:
This is an abridged
version of the actual
response for illustrative
purposes only; the full
response returns more
results.

 Page 34 of 113

Transport POIs by Map

Version Number

2.3.0

Description

Transport POIs by Map returns a set of locations consisting of stops and/or myki ticket outlets
(collectively known as points of interest – i.e. POIs) within a region demarcated on a map through
a set of latitude and longitude coordinates.

Where POIs are geographically dispersed they are returned in a list; where they are
geographically concentrated they can be returned in a cluster, depending on the map griddepth
that is sent in the request.

You can also set a limit of how many stops are listed in a cluster. The API will return what the
total number of POIs is, however it will only return data for as many POIs are set by the limit.
Check out the example response below for a better understanding of how this works.

Request URL

base URL

/v2/poi/%@/lat1/%@/long1/%@/lat2/%@/long2/%@/griddepth/%@/limit/%@?devid=%@
&signature=%@

Note Through the poi parameter, the API can return any combination of POIs
(e.g. ticket outlets only, bus stops only, tram stops and ticket outlets only, all of
the above, and so on).

Note Have a play around with the griddepth parameter to see what best suits the
device you are developing for.

If you set griddepth to zero it will not cluster.

Note When there are more POIs in a cluster than the limit, the POIs returned will be
determined by a business rule that is calculated at the server end. The order of
priority is V/Line stops first, followed by train, tram, bus, Night Bus (which
replaced NightRider) and, last of all, ticket outlets.

Note The maximum number of POIs that can be returned is one thousand (1,000).

 Page 35 of 113

Parameters

poi = a comma separated list of numbers representing the types of POIs you want
returned, defined as follows:

0 Train (metropolitan)
1 Tram
2 Bus (metropolitan and regional, but not V/Line)
3 V/Line regional train and coach
4 Night Bus (which replaced NightRider)
100 Ticket outlet

e.g. “0,1,2,4,100” would return train, tram, bus, Night Bus & ticket outlets

lat1 = latitude at the top left corner of a region depicted on a map, expressed in decimal
degrees.*
e.g. -37.82392124423254

long1 = longitude at the top left corner of a region depicted on a map, expressed in
decimal degrees.*
e.g. 144.9462017431463

lat2 = latitude at the bottom right corner of a region depicted on a map, expressed in
decimal degrees.*
e.g. -37.81540959390813

long2 = longitude at the bottom right corner of a region depicted on a map, expressed in
decimal degrees.*
e.g. 144.9542017407848

* The coordinate pairs (lat1, long1) and (lat2, long2) are two diagonally opposite corners of the
map region of interest, namely:

 (lat1, long1)

 (lat2, long2)

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

Map region

 Page 36 of 113

griddepth = the number of cells per block of cluster grid (between 0-20 inclusive).
e.g. “1” would look like this:

 …while “2” would look like:

limit = the minimum number of POIs (stops or outlets) required to create a cluster, as
well as the maximum number of POIs returned as part of a cluster in the JSON
response (for example, if the limit is “4”, at least 4 POIs are required to form a
cluster; and in the JSON response, if there are 7 total locations in a cluster, only
4 will be listed in the response)
e.g. 4

devid = the user ID supplied in your email from PTV

signature = the customised message digest calculated using the method in the Quick start
guide

Response

Returns a list of JSON objects which are either “locations” or “clusters”; “clusters” have their
own list of “locations” within them.

“locations” have either a “stop” or “outlet” (i.e. ticket outlet) object embedded within them.

For more information on the data structures, check out the JSON object structure.

 Page 37 of 113

Each stop and outlet “location” object has the following attributes:

distance decimal number
– the distance of the stop or outlet “location” object from the spot pinpointed
by the applicable weightedLat and WeightedLong coordinates
– e.g. 0.0026281022

suburb string
– the suburb name
– e.g. “Belgrave”

location_name string
– the name of the stop based on a concise geographic description
– e.g. "20-Barkly Square/115 Sydney Rd (Brunswick)"

lat decimal number
– geographic coordinate of latitude
– e.g. -37.82005

lon decimal number
– geographic coordinate of longitude
– e.g. 144.95047

“stop” objects have the following extra attributes:

transport_type string
– the mode of transport serviced by the stop
– e.g. can be either “train”, “tram”, “bus”, “vline” or “nightrider”

Note For train stations, the location_name is the name of the station – e.g. “Belgrave
Station”.

For tram and bus stops, it is a concise geographic descriptor that is determined
by a hierarchy of available stop information. The hierarchy is:

Landmark > Cross Street > Travel Street

Depending on the content of those fields the location name can be
Landmark/Travel Street, or Cross Street/Travel Street, or just Travel Street,
together with the suburb. Tram stop location names also include a stop number
(which is the number that appears on the signage at the stop or in the timetable;
not the same as the “stop_id”).

Note GPS coordinates for stops are mostly to 6 decimal places. This identifies a
location to sub-metre accuracy.

 Page 38 of 113

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “3”

stop_id numeric string
– the unique identifier of each stop
– e.g. “2171”

While “outlet” objects have the following extra attributes:

outlet_type string (limited values)
– either “stop” meaning a myki card machine at a station or stop or “retail”
meaning a shop of some kind
– e.g. “retail”

business_name string
– the business name of the outlet
– e.g. “IGA Victoria Harbour”

For each set of locations and clusters, it will also return the following objects:

minLat decimal number
 – the minimum latitude value of all of the locations in the cluster, including
those that are not returned (i.e. they are beyond the limit set)**
– e.g. -37.81959

minLong decimal number
 – the minimum longitude value of all of the locations in the cluster, including
those that are not returned (i.e. they are beyond the limit set)**
– e.g. 144.979126

maxLat decimal number
 – the maximum latitude value of all of the locations in the cluster, including
those that are not returned (i.e. they are beyond the limit set)**
– e.g. -37.8134956

maxLong decimal number
 – the maximum longitude value of all of the locations in the cluster, including
those that are not returned (i.e. they are beyond the limit set)**
– e.g. 144.9854

weightedLat decimal number
 – latitude at the point that is the average of all POIs returned in a grid cell**
– e.g. -37.81671

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

 Page 39 of 113

weightedLong decimal number
 – longitude at the point that is the average of all POIs returned in a grid
cell**
– e.g. 144.982849

totalLocations integer
 – the total number of locations within the region described above
– e.g. 7

** The set of coordinates above describe the following points (sample only):

Example use case

Janelle wants to develop her app further to allow tourists to see public transport stops in an entire
region that the tourist has selected on a map. She wants the tourists to be able to specify which
mode of stops they see (i.e. train, tram, bus, V/Line or Night Bus) and also to be able to see myki
ticket outlets if they want. Janelle uses the Transport POIs by Map API to do this.

Example request

http://timetableapi.ptv.vic.gov.au/v2/poi/0,1,2,100/lat1/-
37.82205143151239/long1/144.9779160007277/lat2/-
37.81393456848758/long2/144.9859159992726/griddepth/3/limit/6?devid=4&signature=2BELL8
A77A14452DEC110FD849906EBE4F10DC7B

 Page 40 of 113

Example response

{
 "minLat": -37.81959,
 "minLong": 144.979126,
 "maxLat": -37.8157463,
 "maxLong": 144.9854,
 "weightedLat": -37.8168259,
 "weightedLong": 144.9829,
 "totalLocations": 3,
 "locations": [
 {
 "distance": 0.00321745453,
 "suburb": "Melbourne City",
 "transport_type": "tram",
 “route_type”: 1,
 "stop_id": 2171,
 "location_name": "7B-Rod Laver Arena/Melbourne Park ",
 "lat": -37.81959,
 "lon": 144.979126
 },
 {
 "outlet_type": "Stop",
 "suburb": "East Melbourne",
 "business_name": "Jolimont Station",
 "distance": 0.0026281022,
 "location_name": "Wellington Cres",
 "lat": -37.81653,
 "lon": 144.9841
 },
 {
 "outlet_type": "Retail",
 "suburb": "East Melbourne",
 "business_name": "7-Eleven MCG Melbourne",
 "distance": 0.00390338781,
 "location_name": "142 Wellington Parade",
 "lat": -37.8162231,
 "lon": 144.9854
 }
],
 "clusters": []
}

List of “locations” starts here

The total “locations”
found is 3

“location” that is
a “stop” – it has a
“transport_type”,
“route_type” and
a “stop_id”

Zero “clusters”
of POIs

“location” that is a ticket “outlet” at a
train station (“outlet_type” = “stop” and
“business_name” is the station name,
i.e. “Jolimont Station”)

“location” that is a ticket
“outlet” at a shop
(“outlet_type” = “Retail”)

Note:
This is an abridged
version of the actual
response for illustrative
purposes only; the full
response returns more
results.

 Page 41 of 113

Search

Version Number

2.3.0

Description

The Search API returns all stops and lines that match the input search text.

Note If the input search text is less than three (3) characters and a number, the
Search API will only return matching “line” objects.

Non-numeric search terms less than three (3) characters will not return any
results.

Note The Search API includes a suburb search.

If the search term is also the name of (or part of the name of) a suburb, Search
will return the following:

• stops with the search term in the location_name

• stops with the search term in the suburb field

• lines that travel through suburbs that contain the search term (though
these suburbs are not visible as they are not returned as part of the
“line” object)

For example, searching for “fitzroy” returns

• stops with “fitzroy” in the suburb field (e.g. suburb: “Fitzroy North”)

• stops with “fitzroy” in the location_name field (e.g. “Acland St/Fitzroy St
#135”)

• lines that travel through suburbs that contain “fitzroy”

 Page 42 of 113

Note You can filter search results by transport mode by using the name of the
mode as part of your search. For example:

• “tram carnegie” returns tram stops and lines relevant to Carnegie

• “tram 3” returns tram lines that contain the number “3”

• “whitehorse bus” returns bus lines and stops containing the word
“whitehorse”

You can also filter by suburb, for example:

• “william, fitzroy” returns stops with “william” in the location_name and in
suburbs Fitzroy or Fitzroy North

(The input order for these combinations does not matter – e.g. “tram 3” and
“3 tram” return the same results.)

You can also use the word “route” with numeric search terms to limit results
to “line” objects, for example:

• “route 900” returns the Route 900 line

Request URL

base URL

/v2/search/%@?&devid=%@&signature=%@

Parameters

search = search text
e.g. “Alamein”

devid = the user ID supplied in your email from PTV

signature = the customised message digest calculated using the method in the Quick start
guide

Response

Returns an array of JSON “result” objects for which the “type” equals either “stop” or “line”.

A “stop” object or “line” object is embedded within each “result” depending on its type.

For more information on the data structures, check out the JSON object structure.

“stop” objects have these attributes:

distance decimal number
– returns zero in the context of this API

 Page 43 of 113

suburb string
– the suburb name
– e.g. “Richmond”

transport_type string
– the mode of transport serviced by the stop
– e.g. can be either “train”, “tram”, “bus”, “vline” or “nightrider”

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “3”

stop_id numeric string
– the unique identifier of each stop
– e.g. “12373”

location_name string
– the name of the stop based on a concise geographic description
– e.g. "Bridge Rd/Hoddle St"

lat decimal number
– geographic coordinate of latitude
– e.g. -37.81719

lon decimal number
– geographic coordinate of longitude
– e.g. 144.9902

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

Note For train stations, the location_name is the name of the station – e.g. “Belgrave
Station”.

For tram and bus stops, it is a concise geographic descriptor that is determined
by a hierarchy of available stop information. The hierarchy is:

Landmark > Cross Street > Travel Street

Depending on the content of those fields the location name can be
Landmark/Travel Street, or Cross Street/Travel Street, or just Travel Street,
together with the suburb. Tram stop location names also include a stop number
(which is the number that appears on the signage at the stop or in the timetable;
not the same as the “stop_id”).

 Page 44 of 113

“line” objects have these attributes:

transport_type string
– the mode of transport serviced by the line
– e.g. can be either “train”, “tram”, “bus”, “vline” or “nightrider”

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “1”

line_id numeric string
– the unique identifier of each line
– e.g. “761”

line_name string
– the complete name of the line (i.e. includes the line number(s))
– e.g. "3-3a - Melbourne University - East Malvern"

line_number string
– the main line number that is presented to the public (i.e. not the “line_id”)
– e.g. “3”

line_name_short string
– the name of the line (i.e. doesn’t include the line_number)
– e.g. " Melbourne University - East Malvern"

line_number_long string
– the complete line number, i.e. includes numbers of all paths
– e.g. “3-3a”

Note GPS coordinates for stops are mostly to 6 decimal places. This identifies a
location to sub-metre accuracy.

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

Note For train lines, the line_number will be the same as the line_name (for
example, “Alamein”), while line_number_long will be empty.

 Page 45 of 113

Example use case

Janelle’s next development for the tourist app is to add a search function that allows tourists to
find any stations or stops, as well as any train lines, tram routes or bus routes, by inputting some
text. She uses the Search API.

Example request

http://timetableapi.ptv.vic.gov.au/v2/search/North%20Richmond?&devid=4&signature=93121A8B
16A7158DB8169DBC405CF7405A05F2C0

Example response

[
 {
 "result": {
 "distance": 0.0,
 "suburb": "Abbotsford",
 "transport_type": "tram",
 “route_type”: 1,
 "stop_id": 2470,
 "location_name": "North Richmond Railway Station/Victoria St #19 ",
 "lat": -37.8096581,
 "lon": 144.992584
 },
 "type": "stop"
 },
 {
 "result": {
 "transport_type": "tram",
 “route_type”: 1,
 "line_id": 976,
 "line_name": "Route 78 - North Richmond - Balaclava via Prahran",
 "line_number": "Route 78",
 “line_name_short”: “North Richmond - Balaclava via Prahran”,
 “line_number_long”: “78”
 },
 "type": "line"
 }
]

“result” object

type of “result”
= “stop”

Search term

“result”
object

type of “result”
= “line”

Search term

Note:
This is an abridged
version of the actual
response for illustrative
purposes only; the full
response returns more
results.

 Page 46 of 113

Lines by Mode

Version Number

2.3.0

Description

Lines by Mode returns the lines for a selected mode of transport.

Note Only one route type can be queried at a time through the Lines by Mode API.

Note The optional parameter name allows you to filter on a specific line name.

Request URL

base URL

/v2/lines/mode/%@?name=%@&devid=%@&signature=%@

Parameters

mode = the route_type of the line, defined as follows:

0 Train (metropolitan)
1 Tram
2 Bus (metropolitan, regional and Skybus, but not V/Line)
3 V/Line train and coach
4 Night Bus (which replaced NightRider)

e.g. “2”

name = optional: part of a line’s name
e.g. “Alamein”, “Highpoint”

devid = the user ID supplied in your email from PTV

signature = the customised message digest calculated using the method in the Quick start
guide

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

 Page 47 of 113

Response

Returns a collection of JSON “line” objects, with the attributes below:

For more information on the data structures, check out the JSON object structure.

transport_type string
– the mode of transport serviced by the line
– e.g. can be either “train”, “tram”, “bus”, “vline” or “nightrider”

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “1”

line_id numeric string
– the unique identifier of each line
– e.g. “761”

line_name string
– the complete name of the line (i.e. includes the line number(s))
– e.g. "3-3a - Melbourne University - East Malvern"

line_number string
– the main line number that is presented to the public (i.e. not the “line_id”)
– e.g. “3”

line_name_short string
– the name of the line (i.e. doesn’t include the line_number)
– e.g. " Melbourne University - East Malvern"

line_number_long string
– the complete line number, i.e. includes numbers of all paths
– e.g. “3-3a”

Note For train lines, the line_number will be the same as the line_name (for
example, “Alamein”), while line_number_long will be empty.

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

 Page 48 of 113

Example use case

The next development Janelle implements on her app allows tourists to pick a mode, see all the
lines for that mode and then select a line from that list. She uses the Lines by Mode API.

Example request

http://timetableapi.ptv.vic.gov.au/v2/lines/mode/2?name=Frankston&devid=4&signature=A011C3
22143611FA919A8A6E427A9B31F82CA6EE

Example response

[
 {
 "transport_type": "bus",
 "route_type": 2,
 "line_id": 970,
 "line_name": "772 - Frankston - Eliza Heights",
 "line_number": "772",
 "line_name_short": "Frankston - Eliza Heights",
 "line_number_long": "772"
 }
]

Note:
This is an abridged
version of the actual
response for illustrative
purposes only; the full
response returns more
results.

“line”
object

 Page 49 of 113

Stops on a Line

Version Number

2.3.0

Description

The Stops on a Line API returns a list of all the stops for a requested line, ordered by location
name.

Request URL

base URL

/v2/mode/%@/line/%@/stops-for-line?devid=%@&signature=%@

Parameters

mode = the route_type of the stop, defined as follows:

0 Train (metropolitan)
1 Tram
2 Bus (metropolitan, regional and Skybus, but not V/Line)
3 V/Line train and coach
4 Night Bus (which replaced NightRider)

e.g. “2”

line = the line_id of the requested line
e.g. “1818”

devid = the user ID supplied in your email from PTV

signature = the customised message digest calculated using the method in the Quick start
guide

Response

Returns a collection of JSON “stop” objects, with the attributes below, ordered by
location_name:

distance decimal number
– returns zero in the context of this API

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

 Page 50 of 113

suburb string
– the suburb name
– e.g. “Belgrave”

transport_type string
– the mode of transport serviced by the stop
– e.g. can be either “train”, “tram”, “bus”, “V/Line” or “NightRider”

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “3”

stop_id numeric string
– the unique identifier of each stop
– e.g. “1108”

location_name string
– the name of the stop based on a concise geographic description
– e.g. "20-Barkly Square/115 Sydney Rd (Brunswick)"

lat decimal number
– geographic coordinate of latitude
– e.g. -37.82005

lon decimal number
– geographic coordinate of longitude
– e.g. 144.95047

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

Note For train stations, the location_name is the name of the station – e.g. “Belgrave
Station”.

For tram and bus stops, it is a concise geographic descriptor that is determined
by a hierarchy of available stop information. The hierarchy is:

Landmark > Cross Street > Travel Street

Depending on the content of those fields the location name can be
Landmark/Travel Street, or Cross Street/Travel Street, or just Travel Street,
together with the suburb. Tram stop location names also include a stop number
(which is the number that appears on the signage at the stop or in the timetable;
not the same as the “stop_id”).

 Page 51 of 113

For more information on the data structures, check out the JSON object structure.

Example use case

Janelle builds on her previous app development; this time she wants to help tourists understand
where different trains, trams and buses go – especially bus routes which tend to be a bit less
obvious. Once users have selected a particular line from a list, she wants her app to show all the
stops on that line.

Building on her use of the Lines by Mode API Janelle uses the Stops on a Line API to do this.

Example request

http://timetableapi.ptv.vic.gov.au/v2/mode/2/line/7531/stops-for-
line?devid=4&signature=2BFFB8A77A24452CED110FD869906EBE4F10DC7B

Example response

[
 {
 "distance": 0.0,
 "suburb": "Plenty",
 "transport_type": "bus",
 "route_type": 2,
 "stop_id": 28066,
 "location_name": "200 Yan Yean Rd ",
 "lat": -37.6616554,
 "lon": 145.124359
 }
]

Note GPS coordinates for stops are mostly to 6 decimal places. This identifies a
location to sub-metre accuracy.

“stop”
object

Note:
This is an abridged
version of the actual
response for illustrative
purposes only; the full
response returns more
results.

 Page 52 of 113

Stop Facilities

Version Number

2.3.0

Description

Stop Facilities returns facility information relating to a specific metropolitan train or V/Line train
station, including location, amenity and accessibility details.

Sub-categories of information can be turned off and on in any combination, using optional filters.

Stop details are returned in the JSON format.

Request URL

base URL

/v2/stops/?stop_id=%@&route_type=%@&location=%@&amenity=%@&accessibility=%@
&devid=%@&signature=%@

Note The facility information returned by the Stop Facilities and Stop Facilities (GTFS
Input) API is the same information that is made available by PTV through its apps.

Note stop_id and route_type are mandatory parameters.

Unlike the stop ID in the PTV GTFS dataset, which is unique not only to the stop
but the transport mode (or route_type) as well, a PTV API dataset stop_id can be
shared between two different modes (for example, a metropolitan train station
and a V/Line train station at one location). route_type is therefore needed to
specify the mode of the stop.

 Page 53 of 113

Parameters

stop_id = the stop_id of the stop
e.g. “1108”

route_type = a number representing the transport mode of the stop, defined as follows:

0 Train (metropolitan)
3 V/Line train

e.g. “0”

location = optional: boolean switch that turns the location category filter on or off, where “1”
represents true (i.e. ‘on’) and “0” represents false (i.e. “off”)
e.g. “1”

amenity = optional: boolean switch that turns the amenity category filter on or off, where “1”
represents true (i.e. ‘on’) and “0” represents false (i.e. “off”)
e.g. “0”

accessibility = optional: boolean switch that turns the accessibility category filter on or off, where
“1” represents true (i.e. ‘on’) and “0” represents false (i.e. “off”)
e.g. “1”

devid = the user ID supplied in your email from PTV

signature = the customised message digest calculated using the method in the Quick start
guide

Response

Returns a JSON stop facilities object which includes any/both/none of the optional “location”,
“amenity” and “accessibility” objects requested.

The “location” object contains a “gps” object, and the “accessibility” object contains a
“wheelchair” object.

For more information on the data structures, check out the JSON object structure.

Note Filters for information sub-categories are optional. If all the filters are omitted
(i.e. for location, amenity and accessibility), all of the data will be returned.

Filters can be used in any combination.

For example, you can include all of the filters in your request and switch sub-
categories on or off:

• /v2/stops/?stop_id=12345&route_type=0&location=0&amenity=0&accessibi
lity=1

Or, you can include only the filters for the sub-categories of information you want
returned:

• /v2/stops/?stop_id=12345&route_type=0&accessibility=1

The above examples will return the same data.

 Page 54 of 113

The “stop facilities” object has these attributes:

stop_id numeric string
– the unique identifier of the stop
– e.g. “1020”

stop_mode_id numeric string
– a number representing the mode of transport serviced by the stop, defined
as follows:
 2 Metropolitan train
 5 V/Line train
– e.g. “2”

stop_type string
– the metropolitan train station type (i.e. whether it is a “Premium”, “Host” or
“Unstaffed” station); returns “null” for V/Line train
– e.g. “Premium Station”

stop_type_description string
– the definition applicable to the stop_type; returns “null” for V/Line train
– e.g. “The customer service centre is staffed from first to last train, 7 days a
week. Protective Services Officers are generally present from 6pm to last
train Sunday to Thursday and overnight on Fridays and Saturdays.”

The “location” object has these attributes:

suburb string
– the suburb name
– e.g. “Camberwell”

postcode numeric string
– the suburb’s postcode
– e.g. “3124”

municipality string
– the municipality name
– e.g. “Boroondara”

municipality_id numeric string
– the unique identifier of the municipality
– e.g. “4”

primary_stop_name string
– the nearest cross street to the stop (returns “null” if there is no cross street
nearby)
– e.g. “Burke”

road_type_primary string
– the type of road or street, etc. relating to the specific primary_stop_name
(where it exists); returns “null” if not applicable
– e.g. “Rd”

Note stop_mode_id will be deprecated in the next version of the API.

 Page 55 of 113

second_stop_name string
– the name of the street on which the stop is located
– e.g. “Cookson”

road_type_second string
– the type of road or street, etc. relating to the specific second_stop_name
– e.g. “St”

bay_nbr numeric string
– not applicable for this API; returns “0”
– e.g. “0”

The “gps” object has these attributes:

longitude decimal number
– geographic coordinate of longitude
– e.g. 145.058685

latitude decimal number
– geographic coordinate of latitude
– e.g. -37.8265648

The “amenity” object has these attributes:

toilet boolean
– indicates whether there is a public toilet available at or nearby the stop
– e.g. true

taxi_rank boolean
– indicates whether there is a taxi rank at or nearby the stop
– e.g. true

car_parking integer
– the number of free car parking spots provided at the stop
– e.g. 75

cctv boolean
– indicates whether there are CCTV (i.e. closed circuit television) cameras at
the stop
– e.g. true

The “accessibility” object has these attributes:

lighting boolean
– indicates whether there is lighting at the stop
– e.g. true

stairs boolean
– indicates whether there are stairs at the stop
– e.g. false

Note The following attributes will be deprecated in the next version of the API: suburb,
postcode, municipality, municipality_id, primary_stop_name, road_type_primary,
second_stop_name, road_type_second, bay_nbr

 Page 56 of 113

escalator boolean
– indicates whether there is an escalator at the stop
– e.g. false

lifts boolean
– indicates whether there is an elevator at the stop
– e.g. false

hearing_loop boolean
– indicates whether there is a hearing loop facility provided at the stop
– e.g. false

tactile_tiles boolean
– indicates whether there are tactile tiles (also known as tactile ground
surface indicators, or TGSIs) at the stop
– e.g. false

The “wheelchair” object has these attributes:

accessible_ramp boolean
– indicates whether there is a ramp at the stop that is compliant with the
Disability Standards for Accessible Public Transport under the Disability
Discrimination Act (1992)
– e.g. false

accessible_parking boolean
– indicates whether there is at least one accessible parking spot at the stop
that is compliant with the Disability Standards for Accessible Public
Transport under the Disability Discrimination Act (1992)
– e.g. true

accessible_phone boolean
– indicates whether there is an accessible public telephone at the stop that is
compliant with the Disability Standards for Accessible Public Transport
under the Disability Discrimination Act (1992)
– e.g. false

accessible_toilet boolean
– indicates whether there is an accessible public toilet at the stop that is
compliant with the Disability Standards for Accessible Public Transport
under the Disability Discrimination Act (1992)
– e.g. true

Example use case

Janelle would like to show tourists what facilities are available at stations. She uses the Stop
Facilities API to do this.

Example request

http://timetableapi.ptv.vic.gov.au/v2/stops/?stop_id=1162&route_type=0&location=1&amenity=1&
accessibility=1&devid=4&signature=2BFFB8A77A24452CED110FD869906EBE4F10DC7B

 Page 57 of 113

Example response

{
 "stop_id": 1162,
 "stop_mode_id": 2,
 "stop_type": "Premium Station",
 "stop_type_description": "The customer service centre is staffed from first to last train, 7 days
a week. Protective Services Officers are generally present from 6pm to last train Sunday to
Thursday and overnight on Fridays and Saturdays.",
 "location": {
 "suburb": "Richmond",
 "gps": {
 "longitude": 144.990158,
 "latitude": -37.8240738
 },
 "postcode": 3121,
 "municipality": "Yarra",
 "municipality_id": 53,
 "primary_stop_name": "Punt",
 "road_type_primary": "Rd",
 "second_stop_name": "Swan",
 "road_type_second": "St",
 "bay_nbr": 0
 },
 "amenity": {
 "toilet": true,
 "taxi_rank": false,
 "car_parking": "0",
 "cctv": true
 },
 "accessibility": {
 "lighting": true,
 "stairs": true,
 "escalator": false,
 "lifts": false,
 "hearing_loop": false,
 "tactile_tiles": true,
 "wheelchair": {
 "accessible_ramp": false,
 "accessible_parking": false,
 "accessible_phone": true,
 "accessible_toilet": true
 }
 }
}

“stop
facilities”
object

“amenity”
object

“gps”
object

“accessibility”
object

“location”
object

“wheelchair”
object

 Page 58 of 113

Stop Facilities (GTFS Input)

Version Number

2.3.0

Description

The Stop Facilities (GTFS Input) API returns the same data as Stop Facilities, namely facility
information relating to a specific metropolitan train or V/Line train station, including location,
amenity and accessibility details. Unlike Stop Facilities, however, it uses data inputs from the PTV
GTFS dataset.

Sub-categories of information can be turned off and on in any combination, using optional filters.

Stop details are returned in the JSON format.

Request URL

base URL

/v2/stops/?stop_point_id=%@&location=%@&amenity=%@&accessibility=%@
&devid=%@&signature=%@

Note The facility information returned by the Stop Facilities and Stop Facilities (GTFS
Input) API is the same information that is made available by PTV through its apps.

Note stop_point_id is a mandatory parameter.

Unlike the unique stop ID in the PTV API dataset which can be shared between two
different modes (i.e. route_types, for example, a metropolitan train and a V/Line
train station at one location), the PTV GTFS stop ID is unique to both the stop
and the mode. So route_type is not necessary as a parameter in this version of the
API.

 Page 59 of 113

https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs
https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs

Parameters

stop_point_id = the GTFS stop_id of the stop, taken from the PTV GTFS dataset
e.g. “19939”

location = optional: boolean switch that turns the location category filter on or off, where “1”
represents true (i.e. ‘on’) and “0” represents false (i.e. “off”)
e.g. “1”

amenity = optional: boolean switch that turns the amenity filter on or off, where “1”
represents true (i.e. ‘on’) and “0” represents false (i.e. “off”)
e.g. “0”

accessibility = optional: boolean switch that turns the accessibility filter on or off, where “1”
represents true (i.e. ‘on’) and “0” represents false (i.e. “off”)
e.g. “1”

devid = the user ID supplied in your email from PTV

signature = the customised message digest calculated using the method in the Quick start
guide

Note The public transport data accessed through the PTV Timetable API and in the
PTV GTFS dataset includes attributes with the same name that hold
different data. For example, “stop_id” exists in both datasets but an API stop_id
is different to a GTFS stop_id.

Only the Specific Next Departures (GTFS Input) API and the Stop Facilities
(GTFS Input) API use the GTFS data as inputs – all other calls in the PTV
Timetable API do not accept GTFS inputs.

Response

Returns an identical response to the Stop Facilities API.

Note Filters for information sub-categories are optional. If all the filters are omitted
(i.e. for location, amenity and accessibility), all of the data will be returned.

Filters can be used in any combination.

For example, you can include all of the filters in your request and switch sub-groups
on or off:

• /v2/stops/?stop_point_id=123456&location=0&amenity=0&accessibility=1

Or, you can include only the filters for the sub-groups of information you want
returned:

• /v2/stops/?stop_point_id=123456&accessibility=1

Both of the above examples will return the same data.

 Page 60 of 113

https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs

Note The response will be PTV Timetable API JSON objects – not GTFS objects.

Broad Next Departures

Version Number

2.3.0

Description

Broad Next Departures returns the next departure times at a prescribed stop irrespective of the
line and direction of the service. It also returns disruption information that is relevant to the
departures (where applicable).

For example, if the stop is Camberwell Station, Broad Next Departures will return the times for all
three lines (Belgrave, Lilydale and Alamein) running in both directions (towards the city and away
from the city).

Results include real-time data for metropolitan train, tram and bus services where this data is
made available to PTV.

As at the date of this document, work to deliver real-time data for regional bus is continuing
progressively.

Note We have implemented a throttling mechanism to protect our external suppliers of
real-time data. As a result, the API may not return real-time tram or bus data
in its response (all other data will continue to be made available).

Note Through the limit parameter you can choose to return the very next departure or
all departures for the day from that point in time.

No real-time data is returned if the limit is set to “0” (zero).

Request URL

base URL

/v2/mode/%@/stop/%@/departures/by-destination/limit/%@?
includeCancelled=%@&devid=%@&signature=%@

 Page 61 of 113

Parameters

mode = the route_type of the stop, defined as follows:

0 Train (metropolitan)
1 Tram
2 Bus (metropolitan, regional and Skybus, but not V/Line)
3 V/Line train and coach
4 Night Bus (which replaced NightRider)

e.g. “2”

stop = the stop_id of the stop
e.g. “1108”

limit = the number of next departure times to be returned, i.e. “5” will return the next five
departure times (notes: “0” will return departures for the entire day and prohibit
real-time data from being returned; “1” will limit it to the very next departure, even
if this is a few days away)
e.g. 2

includeCancelled = optional, boolean: indicates whether a metropolitan train departure response
will return cancelled services, if any exist, or not (default = false)
e.g. true

Note The includeCancelled parameter only applies to metropolitan train services. It
will not have any effect on queries about other modes.

devid = the user ID supplied in your email from PTV

signature = the customised message digest calculated using the method in the Quick start
guide

Response

Returns a collection of JSON timetable “values” that have a “platform”, “run” and
“disruptions” object embedded within them.

The “platform” object has a “stop” and “direction” object in it, and the “direction” object has
a “line” object within it.

For more information on the data structures, check out the JSON object structure.

Timetable “values” have the following attributes:

time_timetable_utc date and time expressed in ISO 8601 UTC format
– the scheduled time of the service at the stop
– e.g. " 2016-02-25T05:50:00Z"

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

 Page 62 of 113

time_realtime_utc date and time expressed in ISO 8601 UTC format
– a place holder for the real-time of the service at the stop if this is available.
The API receives data from multiple feeds covering train, tram and bus
services; if the relevant feed system is not available, it will return null
– e.g. “null”

Note If no real-time feed is provided for a mode, time_realtime_utc will return “null”
for all services in that mode.

flags character
– a stop may have zero or more flags associated with it,
 delimited by a “-” character; examples include:

RR = Reservations Required
GC = Guaranteed Connection
DOO = Drop Off Only
PUO = Pick Up Only
MO = Mondays only
TU = Tuesdays only
WE = Wednesdays only
TH = Thursdays only
FR = Fridays only
SS = School days only

note: ignore “E” flag

returns empty if no flags apply

– e.g. “ ”

“run” objects have the following attributes:

transport_type string
– the mode of transport serviced by the stop (can be either “train”, “tram”,
“bus”, “vline” or “nightrider”)
– e.g. “train”

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “0”

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

 Page 63 of 113

run_id numeric string
– the unique identifier of each run
– e.g. “12505”

num_skipped integer
– the number of stops skipped for the run, applicable to train; a number
greater than zero indicates either a limited express or express service
– e.g. 0

destination_id numeric string
– the stop_id of the destination, i.e. the last stop for the run
– e.g. “1039”

destination_name string
– the location_name of the destination, i.e. the last stop for the run
– e.g. “Cheltenham”

status string
– the status of the run (options for metropolitan train services include
“scheduled”, “added”, “updated” and “cancelled”; defaults to “scheduled” for
all tram, bus, V/Line and Night Bus services)
– e.g. “added”

“platform” objects have the following attributes:

platform_number string
– platform number at a metropolitan train station; returns “null” for tram, bus,
V/Line and Night Bus services
– e.g. “2”

at_platform_now boolean
– indicates whether the specific metropolitan train service is at the platform
at the time of query; returns false for all tram, bus, V/Line and Night Bus
services
– e.g. true

realtime_id string
– a place holder for the stop’s real-time feed system ID where this exists (if
there is no real-time ID for the stop, this attribute will return “0”)
– e.g. “0”

“stop” objects have these attributes:

distance decimal number
–returns zero in the context of this API

suburb string
– the suburb name
– e.g. “Bentleigh”

transport_type string
– the mode of transport serviced by the stop (can be either “train”, “tram”,
“bus”, “V/Line” or “NightRider”)
– e.g. “train”

route_type integer
– a number representing the mode of transport serviced by the stop, defined

 Page 64 of 113

as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “0”

stop_id numeric string
– the unique identifier of each stop
– e.g. “1020”

location_name string
– the name of the stop based on a concise geographic description
– e.g. "Bentleigh"

lat decimal number
– geographic coordinate of latitude
– e.g. -37.9174271

lon decimal number
– geographic coordinate of longitude
– e.g. 145.036987

“direction” objects have the following attributes:

linedir_id numeric string
– unique identifier of a particular line and direction
– e.g. “39”

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

Note For train stations, the location_name is the name of the station – e.g. “Belgrave
Station”.

For tram and bus stops, it is a concise geographic descriptor that is determined
by a hierarchy of available stop information. The hierarchy is:

Landmark > Cross Street > Travel Street

Depending on the content of those fields the location name can be
Landmark/Travel Street, or Cross Street/Travel Street, or just Travel Street,
together with the suburb. Tram stop location names also include a stop number
(which is the number that appears on the signage at the stop or in the timetable;
not the same as the “stop_id”).

Note GPS coordinates for stops are mostly to 6 decimal places. This identifies a
location to sub-metre accuracy.

 Page 65 of 113

direction_id numeric string
– unique identifier of a direction (e.g. “0” signifies “city”)
– e.g. “6”

direction_name string
– name of the direction of the service
– e.g. "Frankston"

“line” objects have these attributes:

transport_type string
– the mode of transport serviced by the line (can be either “train”, “tram”,
“bus”, “V/Line” or “NightRider”)
– e.g. “train”

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “0”

line_id numeric string
– the unique identifier of each line
– e.g. “6”

line_name string
– the complete name of the line (i.e. includes the line number(s))
– e.g. "Frankston"

line_number string
– the main line number that is presented to the public (i.e. not the “line_id”)
– e.g. “Frankston”

line_name_short string
– the name of the line (i.e. doesn’t include the line_number)
– e.g. "Frankston"

line_number_long string
– the complete line number, i.e. includes numbers of all paths
– e.g. “”

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

Note For train lines, the line_number will be the same as the line_name (for
example, “Alamein”), while line_number_long will be empty.

 Page 66 of 113

disruption information objects have these attributes:

disruption_id numeric string
– the unique identifier of the disruption information
– e.g. “39895”

title string
– a headline or title summarising the disruption information
– e.g. “Station changes at Bentleigh Station: Monday 9 November 2015 until
late 2016”

url string
– the url of the relevant article on the PTV website
– e.g. “http://ptv.vic.gov.au/live-travel-updates/article/temporary-car-park-
closure-at-bentleigh-station-monday-9-november-2015-until-late-2016”

description string
– a truncated version of the description of the disruption that appears on the
PTV website
– e.g. " Due to works to remove the Centre Road level crossing, major
changes will occur at Bentleigh Station from November 2015 until late 2016."

status string
– a description of the disruption status (options include “Current” and
“Planned”)
– e.g. “Current”

type string
– a description of the type of disruption information (options include “Major
Delays”, “Service Information”, “Diversion”, “Planned Suspended”, “Planned
Closure” and “Planned Works”)
– e.g. “Planned Closure”

publishedOn datetime in ISO 8601 UTC format
– the date and time the disruption information is published on the PTV
website
– e.g. “2015-11-25T19:42:46Z”

lastUpdated datetime in ISO 8601 UTC format
– the date and time the disruption information was last updated
– e.g. “2016-02-15T04:08:27Z”

fromDate datetime in ISO 8601 UTC format
– the date and time at which the disruption began (if current), or will begin (if
planned)
– e.g. “2015-11-08T16:00:00Z”

toDate datetime in ISO 8601 UTC format
– the date and time at which the disruption will end; returns “null” if this is
unknown
– e.g. “2016-12-31T16:00:00Z”

Note “disruptions” objects may have one or more disruption information objects
within them.

If there are no disruptions applicable to the departure timetable value, the
“disruptions” object will be empty.

 Page 67 of 113

service_time string
– the time of the specific service to which the disruption applies; returns null
if the disruption does not apply to any specific services or if it applies to
multiple services (time is in 24 hour clock format (HH:MM:SS) – Melbourne
time zone, i.e. AEDT/AEST)
– e.g. “null”

Example use case

Janelle has decided to add some timetable information to the tourist app. The next development
lets tourists see the next departure times for any of the stations or stops that the tourist selects
from a map or list.

Janelle uses the Broad Next Departures API to show the departure times for stops found via any
of the four methods available (Stops Nearby, Transport POIs by Map or Search, or Lines by
Mode followed by Stops on a Line).

Example request

http://timetableapi.ptv.vic.gov.au/v2/mode/0/stop/1104/departures/by-
destination/limit/1?devid=4&signature=2BEBBA8A77A24452DEC040F849906EBE4F10DA7D

 Page 68 of 113

Example response

{
 "values": [
 {
 "platform": {
 "platform_number": “2”,
 "at_platform_now": false,
 "realtime_id": 0,
 "stop": {
 "distance": 0.0,
 "suburb": "East Melbourne",
 "transport_type": "train",
 "route_type": 0,
 "stop_id": 1104,
 "location_name": "Jolimont-MCG",
 "lat": -37.81653,
 "lon": 144.9841
 },
 "direction": {
 "linedir_id": 38,
 "direction_id": 5,
 "direction_name": "South Morang",
 "line": {
 "transport_type": "train",
 "route_type": 0,
 "line_id": 5,
 "line_name": "South Morang",
 "line_number": "South Morang",
 "line_name_short": "South Morang",
 "line_number_long": ""
 }
 }
 },
 "run": {
 "transport_type": "train",
 "route_type": 0,
 "run_id": 15716,
 "num_skipped": 0,
 "destination_id": 1041,
 "destination_name": "Clifton Hill",
 “status”: “scheduled”
 },
 "time_timetable_utc": "2016-08-16T01:51:00Z",
 "time_realtime_utc": "2016-08-16T01:53:00Z",
 "flags": "",
 "disruptions": ""
 }
]
}

Timetable
“values”
object

“line”
object

“stop”
object

“platform”
object

“direction”
object

“run”
object

List of timetable “values” objects starts here

No disruptions
applicable

 Page 69 of 113

Specific Next Departures

Version Number

2.3.0

Description

Specific Next Departures returns the times for the next departures at a prescribed stop for a
specific mode, line and direction. It also returns disruption information that is relevant to the
departures (where applicable).

For example, if the stop is Camberwell Station, Specific Next Departures returns only the times
for one line running in one direction (for example, the Belgrave line running towards the city).

Results include real-time data for metropolitan train, tram and bus services where this data is
made available to PTV.

As at the date of this document, work to deliver real-time data for regional bus is continuing
progressively.

Note We have implemented a throttling mechanism to protect our external suppliers of
real-time data. As a result, the API may not return real-time tram or bus data
in its response (all other data will continue to be made available).

Request URL

base URL

/v2/mode/%@/line/%@/stop/%@/directionid/%@/departures/all/limit/%@?for_utc=%@&
includeCancelled=%@&devid=%@&signature=%@

Note Through the limit parameter you can choose how many departure times to
display. Setting the limit to zero will return departures for the entire day which
works best when setting the date and time to midnight local time (in UTC
format).

No real-time data is returned if the limit is set to “0” (zero).

 Page 70 of 113

Parameters

mode = the route_type of the stop, defined as follows:

0 Train (metropolitan)
1 Tram
2 Bus (metropolitan, regional and Skybus, but not V/Line)
3 V/Line train and coach
4 Night Bus (which replaced NightRider)

e.g. “0”

line = the line_id of the requested service
e.g. “3”

stop = the stop_id of the stop
e.g. “1108”

directionid = the direction_id of the requested service
e.g. “0”

limit = the number of next departure times to be returned, i.e. “5” will return the next five
departure times (notes: “0” will return departures for the entire day and prohibit
real-time data from being returned; “1” will limit it to the very next departure, even
if this is a few days away)
e.g. 2

for_utc = optional: the date and time of the request in ISO 8601 UTC format
e.g. 2013-11-13T07:08:03Z

includeCancelled = optional, boolean: indicates whether a response will return cancelled
services, if any exist, or not (default = false)
e.g. true

Note The includeCancelled parameter only applies to metropolitan train services. It
will not have any effect on queries about other modes.

devid = the user ID supplied in your email from PTV

signature = the customised message digest calculated using the method in the Quick start
guide

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

Note The optional parameter for_utc allows you to set the time when departures
should be returned from (the default time is the time of the query).

 Page 71 of 113

Response

Returns a collection of JSON timetable “values” that have a “platform” and “run” object
embedded within them.

The “platform” object has a “stop” and “direction” object in it, and the “direction” object has
a “line” object within it.

A list of “disruptions” is returned at the end of the response, after all the timetable “values”.

For more information on the data structures, check out the JSON object structure.

Timetable “values” have the following attributes:

time_timetable_utc date and time expressed in ISO 8601 UTC format
– the scheduled time of the service at the stop
– e.g. "2016-02-25T05:45:00Z"

time_realtime_utc date and time expressed in ISO 8601 UTC format
– a place holder for the real-time of the service at the stop if this is available.
The API receives data from multiple feeds covering train, tram and bus
services; if the relevant feed system is not available, it will return null
– e.g. “null”

Note If no real-time feed is provided for a mode, time_realtime_utc will return “null”
for all services in that mode.

flags Character
– a stop may have zero or more flags associated with it,
 delimited by a “-“ character; examples include:

RR = Reservations Required
GC = Guaranteed Connection
DOO = Drop Off Only
PUO = Pick Up Only
MO = Mondays only
TU = Tuesdays only
WE = Wednesdays only
TH = Thursdays only
FR = Fridays only
SS = School days only

note: ignore “E” flag

returns empty if no flags apply

– e.g. “”

“run” objects have the following attributes:

transport_type string
– the mode of transport serviced by the stop (can be either “train”, “tram”,
“bus”, “vline” or “nightrider”)
– e.g. “train”

 Page 72 of 113

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “0”

run_id numeric string
– the unique identifier of each run
– e.g. “12507”

num_skipped integer
– the number of stops skipped for the run, applicable to train; a number
greater than zero indicates either a limited express or express service
– e.g. 0

destination_id numeric string
– the stop_id of the destination, i.e. the last stop for the run
– e.g. “1073”

destination_name string
– the location_name of the destination, i.e. the last stop for the run
– e.g. “Frankston”

status string
– the status of the run (options for metropolitan train services include
“scheduled”, “added”, “updated” and “cancelled”; returns “scheduled” for all
tram, bus, V/Line and Night Bus services)
– e.g. “added”

“platform” objects have the following attributes:

platform_number string
– platform number at a metropolitan train station; returns “null” for tram, bus,
V/Line and Night Bus services
– e.g. “2”

at_platform_now boolean
– indicates whether the specific metropolitan train service is at the platform;
returns false for all tram, bus, V/Line and Night Bus services
– e.g. true

realtime_id string
– a place holder for the stop’s real-time feed system ID where this exists (if
there is no real-time ID for the stop, this attribute will return “0”)
– e.g. “0”

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

 Page 73 of 113

“stop” objects have these attributes:

distance decimal number
–returns zero in the context of this API

suburb string
– the suburb name
– e.g. “Bentleigh”

transport_type string
– the mode of transport serviced by the stop (can be either “train”, “tram”,
“bus”, “vline” or “nightrider”)
– e.g. “train”

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “0”

stop_id numeric string
– the unique identifier of each stop
– e.g. “1020”

location_name string
– the name of the stop based on a concise geographic description
– e.g. "Bentleigh"

lat decimal number
– geographic coordinate of latitude
– e.g. -37.9174271

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

Note For train stations, the location_name is the name of the station – e.g. “Belgrave
Station”.

For tram and bus stops, it is a concise geographic descriptor that is determined
by a hierarchy of available stop information. The hierarchy is:

Landmark > Cross Street > Travel Street

Depending on the content of those fields the location name can be
Landmark/Travel Street, or Cross Street/Travel Street, or just Travel Street,
together with the suburb. Tram stop location names also include a stop number
(which is the number that appears on the signage at the stop or in the timetable;
not the same as the “stop_id”).

 Page 74 of 113

lon decimal number
– geographic coordinate of longitude
– e.g. 145.036987

“direction” objects have the following attributes:

linedir_id numeric string
– unique identifier of a particular line and direction
– e.g. “39”

direction_id numeric string
– unique identifier of a direction
– e.g. “6”

direction_name string
– name of the direction of the service (e.g. “0” signifies “city”)
– e.g. "Frankston"

“line” objects have these attributes:

transport_type string
– the mode of transport serviced by the stop (can be either “train”, “tram”,
“bus”, “vline” or “nightrider”)
– e.g. “train”

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “0”

line_id numeric string
– the unique identifier of each line
– e.g. “6”

line_name string
– the complete name of the line (i.e. includes the line number(s))
– e.g. "Frankston"

line_number string
– the main line number that is presented to the public (i.e. not the “line_id”)
– e.g. “Frankston”

Note GPS coordinates for stops are mostly to 6 decimal places. This identifies a
location to sub-metre accuracy.

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

 Page 75 of 113

line_name_short string
– the name of the line (i.e. doesn’t include the line_number)
– e.g. "Frankston"

line_number_long string
– the complete line number, i.e. includes numbers of all paths
– e.g. “ ”

disruption information objects have these attributes:

disruption_id numeric string
– the unique identifier of the disruption information
– e.g. “39895”

title string
– a headline or title summarising the disruption information
– e.g. “Station changes at Bentleigh Station: Monday 9 November 2015 until
late 2016”

url string
– the url of the relevant article on the PTV website
– e.g. “http://ptv.vic.gov.au/live-travel-updates/article/temporary-car-park-
closure-at-bentleigh-station-monday-9-november-2015-until-late-2016”

description string
– a truncated version of the description of the disruption that appears on the
PTV website
– e.g. " Due to works to remove the Centre Road level crossing, major
changes will occur at Bentleigh Station from November 2015 until late 2016."

status string
– a description of the disruption status (options include “Current” and
“Planned”)
– e.g. “Current”

type string
– a description of the type of disruption information (options include “Major
Delays”, “Service Information”, “Diversion”, “Planned Suspended”, “Planned
Closure” and “Planned Works”)
– e.g. “Planned Closure”

publishedOn datetime in ISO 8601 UTC format
– the date and time the disruption information is published on the PTV

Note For train lines, the line_number will be the same as the line_name (for
example, “Alamein”), while line_number_long will be empty.

Note The list of “disruptions” objects may have one or more disruption information
objects within it.

If there are no disruptions applicable to the departure timetable value(s), the
“disruptions” object will be empty.

 Page 76 of 113

website
– e.g. “2015-11-25T19:42:46Z”

lastUpdated datetime in ISO 8601 UTC format
– the date and time the disruption information was last updated
– e.g. “2016-02-15T04:08:27Z”

fromDate datetime in ISO 8601 UTC format
– the date and time at which the disruption began (if current), or will begin (if
planned)
– e.g. “2015-11-08T16:00:00Z”

toDate datetime in ISO 8601 UTC format
– the date and time at which the disruption will end; returns “null” if this is
unknown
– e.g. “2016-12-31T16:00:00Z”

service_time string
– the time of the specific service to which the disruption applies; returns null
if the disruption does not apply to any specific services or if it applies to
multiple services (time is in 24 hour clock format (HH:MM:SS) – Melbourne
time zone, i.e. AEDT/AEST)
– e.g. “null”

Example use case

Janelle’s next enhancement for the tourist app is to let tourists choose which departure times they
see for any given stop, by selecting the line and direction.

This will mean that if a stop or station has multiple routes or lines stopping there (for example,
Flinders Street Station), the tourist won’t be bombarded with a confusing list of departure times
for multiple lines.

Building on the other APIs, Janelle uses the Specific Next Departures API to do this.

Example request

http://timetableapi.ptv.vic.gov.au/v2/mode/0/line/8/stop/1104/directionid/8/departures/all/limit/1?for
_utc=2016-03-
15T03:18:08Z&devid=4&signature=2BEBB8A77A24452FAF110FD849906EBE4F10DC7B

 Page 77 of 113

Example response

{
 "values": [
 {
 "platform": {
 "platform_number": “2”,
 "at_platform_now": false,
 "realtime_id": 0,
 "stop": {
 "distance": 0.0,
 "suburb": "East Melbourne",
 "transport_type": "train",
 "route_type": 0,
 "stop_id": 1104,
 "location_name": "Jolimont-MCG",
 "lat": -37.81653,
 "lon": 144.9841
 },
 "direction": {
 "linedir_id": 41,
 "direction_id": 8,
 "direction_name": "Hurstbridge",
 "line": {
 "transport_type": "train",
 "route_type": 0,
 "line_id": 8,
 "line_name": "Hurstbridge",
 "line_number": "Hurstbridge",
 "line_name_short": "Hurstbridge",
 "line_number_long": ""
 }
 }
 },
 "run": {
 "transport_type": "train",
 "route_type": 0,
 "run_id": 25456,
 "num_skipped": 0,
 "destination_id": 1041,
 "destination_name": "Clifton Hill",
 “status”: “scheduled”
 },
 "time_timetable_utc": "2016-08-15T03:21:00Z",
 "time_realtime_utc": "2016-08-15T03:21:00Z",
 "flags": ""
 }
]
 "disruptions": []
}

Timetable
“values”
object

“line”
object

“stop”
object

“platform”
object

“direction”
object

“run”
object

List of timetable “values” objects starts here

No disruptions
applicable

 Page 78 of 113

Specific Next Departures (GTFS Input)

Version Number

2.3.0

Description

The Specific Next Departures (GTFS Input) API returns the same data as Specific Next
Departures, namely the times for the next departures at a prescribed stop for a specific mode,
line and direction. Unlike Specific next Departures, however, it uses data inputs from the PTV
GTFS dataset.

The API also returns disruption information that is relevant to the departures (where applicable).

Results include real-time data for metropolitan train, tram and bus services where this data is
made available to PTV.

As at the date of this document, work to deliver real-time data for regional bus is continuing
progressively.

Note We have implemented a throttling mechanism to protect our external suppliers of
real-time data. As a result, the API may not return real-time tram or bus data
in its response (all other data will continue to be made available).

Request URL

base URL

/v2/mode/%@/route_id/%@/stop/%@/direction/%@/departures/all/limit/%@?for_utc=%@&
includeCancelled=%@&devid=%@&signature=%@

Parameters

mode = the GTFS service mode of the stop, taken from the PTV GTFS dataset
e.g. “2”

route_id = the GTFS route_id of the stop, taken from the PTV GTFS dataset
e.g. “4-364-mjp-1”

Note Through the “limit” parameter you can choose how many departure times to
display. Setting the limit to zero will return departures for the entire day which
works best when setting the date and time to midnight local time (in UTC
format).

No real-time data is returned if the limit is set to “0” (zero).

 Page 79 of 113

https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs
https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs
https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs
https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs

stop = the GTFS stop_id of the stop, taken from the PTV GTFS dataset
e.g. “19943”

direction = the GTFS direction_id of the stop, taken from the PTV GTFS dataset
e.g. “0”

Note GTFS service mode is defined in the PTV GTFS Release Notes available on
the DataVic website.

GTFS stop_id is available within the stop.txt files in the PTV GTFS dataset,
while GTFS route_id and GTFS direction_id are available within the trips.txt
files.

limit = the number of next departure times to be returned, i.e. “5” will return the next five
departure times (notes: “0” will return departures for the entire day and prohibit
real-time data from being returned; “1” will limit it to the very next departure, even
if this is a few days away)
e.g. 2

for_utc = optional: the date and time of the request in ISO 8601 UTC format
e.g. 2013-11-13T07:08:03Z

Note The optional parameter for_utc allows you to set the time when departures
should be returned from (the default time is the time of the query).

includeCancelled = optional, boolean: indicates whether a response will return cancelled
services, if any exist, or not (default = false)
e.g. true

Note The includeCancelled parameter only applies to metropolitan train services. It
will not have any effect on queries about other modes.

devid = the user ID supplied in your email from PTV

signature = the customised message digest calculated using the method in the Quick start
guide

Note The public transport data accessed through the PTV Timetable API and in the
PTV GTFS dataset includes attributes with the same name that hold
different data. For example, “stop_id” exists in both datasets but an API stop_id
is different to a GTFS stop_id.

Only the Specific Next Departures (GTFS Input) API and the Stop Facilities
(GTFS Input) API use the GTFS data as inputs– all other calls in the PTV
Timetable API do not accept GTFS inputs.

Response

Returns an identical response to the Specific Next Departures API.

 Page 80 of 113

https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs
https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs
https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs

Note The response will be PTV Timetable API JSON objects – not GTFS objects.

Stopping Pattern

Version Number

2.3.0

Description

The Stopping Pattern API returns the stopping pattern for a specific stop and run (i.e. transport
service) at a prescribed time. The stopping pattern is comprised of timetable values ordered by
stopping order. The API also returns disruption information that is relevant to the departures
(where applicable).

Results include real-time data for metropolitan train, tram and bus services where this data is
made available to PTV.

As at the date of this document, work to deliver real-time data for regional bus is continuing
progressively.

Note We have implemented a throttling mechanism to protect our external suppliers of
real-time data. As a result, the API may not return real-time tram or bus data
in its response (all other data will continue to be made available).

Request URL

base URL

/v2/mode/%@/run/%@/stop/%@/stopping-pattern?for_utc=%@&devid=%@&signature=%@

Parameters

mode = the route_type of the stop, defined as follows:

0 Train (metropolitan)
1 Tram
2 Bus (metropolitan, regional and Skybus, but not V/Line)
3 V/Line train and coach
4 Night Bus (which replaced NightRider)

e.g. “2”

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

 Page 81 of 113

run = the run_id of the requested run
e.g. “1464”

stop = the stop_id of the stop
e.g. “1108”

for_utc = optional: the date and time of the request in ISO 8601 UTC format
e.g. 2013-11-13T05:24:25Z

devid = the user ID supplied in your email from PTV

signature = the customised message digest calculated using the method in the Quick start
guide

Response

Returns a collection of JSON timetable “values” that have a “platform” and “run” object
embedded within them.

The “platform” object has a “stop” and “direction” object in it, and the “direction” object has
a “line” object within it.

A list of “disruptions” is returned at the end of the response, after all the timetable “values”.

For more information on the data structures, check out the JSON object structure.

Timetable “values” have the following attributes:

time_timetable_utc date and time expressed in ISO 8601 UTC format
– the scheduled time of the service at the stop
– e.g. "2016-02-25T03:46:00Z"

time_realtime_utc date and time expressed in ISO 8601 UTC format
– a place holder for the real-time of the service at the stop if this is available.
The API receives data from multiple feeds covering train, tram and bus
services; if the relevant feed system is not available, it will return null
– e.g. “null”

Note If no real-time feed is provided for a mode, time_realtime_utc will return “null”
for all services in that mode.

Note The order of the timetable “values” objects reflects the stopping pattern.

 Page 82 of 113

flags Character
– a stop may have zero or more flags associated with it,
 delimited by a “-“ character; examples include:

RR = Reservations Required
GC = Guaranteed Connection
DOO = Drop Off Only
PUO = Pick Up Only
MO = Mondays only
TU = Tuesdays only
WE = Wednesdays only
TH = Thursdays only
FR = Fridays only
SS = School days only

note: ignore “E” flag

returns empty if no flags apply

– e.g. “”

“run” objects have the following attributes:

transport_type string
– the mode of transport serviced by the stop (can be either “train”, “tram”,
“bus”, “vline” or “nightrider”)
– e.g. “train”

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “0”

run_id numeric string
– the unique identifier of each run
– e.g. “1464”

num_skipped integer
– the number of stops skipped for the run, applicable to train; a number
greater than zero indicates either a limited express or express service
– e.g. 0

destination_id numeric string
– the stop_id of the destination, i.e. the last stop for the run
– e.g. “1044”

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

 Page 83 of 113

destination_name string
– the location_name of the destination, i.e. the last stop for the run
– e.g. “Craigieburn”

status string
– the status of the run (options for metropolitan train services include
“scheduled”, “added”, “updated” and “cancelled”; returns “scheduled” for all
tram, bus, V/Line and Night Bus services)
– e.g. “added”

“platform” objects have the following attributes:

platform_number string
– platform number at a metropolitan train station; returns “null” for tram, bus,
V/Line and Night Bus services
– e.g. “2”

at_platform_now boolean
– indicates whether the specific metropolitan train service is at the platform;
returns false for all tram, bus, V/Line and Night Bus services
– e.g. true

realtime_id string
– a place holder for the stop’s real-time feed system ID where this exists (if
there is no real-time ID for the stop, this attribute will return “0”)
– e.g. “0”

“stop” objects have these attributes:

distance decimal number
–returns zero in the context of this API

suburb string
– the suburb name
– e.g. “Brunswick”

transport_type string
– the mode of transport serviced by the stop (can be either “train”, “tram”,
“bus”, “vline” or “nightrider”)
– e.g. “train”

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “3”

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

 Page 84 of 113

stop_id numeric string
– the unique identifier of each stop
– e.g. “1234”

location_name string
– the name of the stop based on a concise geographic description
– e.g. "20-Barkly Square/115 Sydney Rd (Brunswick)"

lat decimal number
– geographic coordinate of latitude
– e.g. -37.82005

lon decimal number
– geographic coordinate of longitude
– e.g. 144.95047

“direction” objects have the following attributes:

linedir_id numeric string
– unique identifier of a particular line and direction
– e.g. “21”

direction_id numeric string
– unique identifier of a direction
– e.g. “0”

direction_name string
– name of the direction of the service (e.g. “0” signifies “city”)
– e.g. "City (Flinders Street)"

“line” objects have these attributes:

transport_type string
– the mode of transport serviced by the stop (can be either “train”, “tram”,
“bus”, “vline” or “nightrider”)
– e.g. “train”

Note For train stations, the location_name is the name of the station – e.g. “Belgrave
Station”.

For tram and bus stops, it is a concise geographic descriptor that is determined
by a hierarchy of available stop information. The hierarchy is:

Landmark > Cross Street > Travel Street

Depending on the content of those fields the location name can be
Landmark/Travel Street, or Cross Street/Travel Street, or just Travel Street,
together with the suburb. Tram stop location names also include a stop number
(which is the number that appears on the signage at the stop or in the timetable;
not the same as the “stop_id”).

Note GPS coordinates for stops are mostly to 6 decimal places. This identifies a
location to sub-metre accuracy.

 Page 85 of 113

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “1”

line_id numeric string
– the unique identifier of each line
– e.g. “761”

line_name string
– the complete name of the line (i.e. includes the line number(s))
– e.g. "3-3a - Melbourne University - East Malvern"

line_number string
– the main line number that is presented to the public (i.e. not the “line_id”)
– e.g. “3”

line_name_short string
– the name of the line (i.e. doesn’t include the line_number)
– e.g. " Melbourne University - East Malvern"

line_number_long string
– the complete line number, i.e. includes numbers of all paths
– e.g. “3-3a”

disruption information objects have these attributes:

disruption_id numeric string
– the unique identifier of the disruption information
– e.g. “39895”

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

Note For train lines, the line_number will be the same as the line_name (for
example, “Alamein”), while line_number_long will be empty.

Note The list of “disruptions” objects may have one or more disruption information
objects within it.

If there are no disruptions applicable to the departure timetable values, the
“disruptions” object will return null.

 Page 86 of 113

title string
– a headline or title summarising the disruption information
– e.g. “Station changes at Bentleigh Station: Monday 9 November 2015 until
late 2016”

url string
– the url of the relevant article on the PTV website
– e.g. “http://ptv.vic.gov.au/live-travel-updates/article/temporary-car-park-
closure-at-bentleigh-station-monday-9-november-2015-until-late-2016”

description string
– a truncated version of the description of the disruption that appears on the
PTV website
– e.g. " Due to works to remove the Centre Road level crossing, major
changes will occur at Bentleigh Station from November 2015 until late 2016."

status string
– a description of the disruption status (options include “Current” and
“Planned”)
– e.g. “Current”

type string
– a description of the type of disruption information (options include “Major
Delays”, “Service Information”, “Diversion”, “Planned Suspended”, “Planned
Closure” and “Planned Works”)
– e.g. “Planned Closure”

publishedOn datetime in ISO 8601 UTC format
– the date and time the disruption information is published on the PTV
website
– e.g. “2015-11-25T19:42:46Z”

lastUpdated datetime in ISO 8601 UTC format
– the date and time the disruption information was last updated
– e.g. “2016-02-15T04:08:27Z”

fromDate datetime in ISO 8601 UTC format
– the date and time at which the disruption began (if current), or will begin (if
planned)
– e.g. “2015-11-08T16:00:00Z”

toDate datetime in ISO 8601 UTC format
– the date and time at which the disruption will end; returns “null” if this is
unknown
– e.g. “2016-12-31T16:00:00Z”

service_time string
– the time of the specific service to which the disruption applies; returns null
if the disruption does not apply to any specific services or if it applies to
multiple services (time is in 24 hour clock format (HH:MM:SS) – Melbourne
time zone, i.e. AEDT/AEST)
– e.g. “null”

 Page 87 of 113

Example use case

Next Janelle wants to enhance her tourist app so it can show a basic timetable for any of the
departure times selected by tourists (e.g. returned through Broad Next Departures). She uses the
Stopping Pattern API to do this.

Example request

http://timetableapi.ptv.vic.gov.au/v2/mode/0/run/21173/stop/1104/stopping-pattern?for_utc=2016-
03-15T03:18:08Z&devid=4&signature=2CACC8A77A24452DEC110FD948906EBE4F10DC7B

 Page 88 of 113

Example response

{
 "values": [
 {
 "platform": {
 "platform_number": “5”,
 "at_platform_now": false,
 "realtime_id": 0,
 "stop": {
 "distance": 0.0,
 "suburb": "Melbourne City",
 "transport_type": "train",
 "route_type": 0,
 "stop_id": 1071,
 "location_name": "Flinders Street",
 "lat": -37.81831,
 "lon": 144.966965
 },
 "direction": {
 "linedir_id": 0,
 "direction_id": 6,
 "direction_name": "Frankston",
 "line": {
 "transport_type": "train",
 "route_type": 0,
 "line_id": 6,
 "line_name": "Frankston",
 "line_number": "Frankston",
 "line_name_short": "Frankston",
 "line_number_long": ""
 }
 }
 },
 "run": {
 "transport_type": "train",
 "route_type": 0,
 "run_id": 21173,
 "num_skipped": 0,
 "destination_id": 0,
 "destination_name": "",
 "status": "scheduled"
 },
 "time_timetable_utc": "2016-08-15T07:08:00Z",
 "time_realtime_utc": null,
 "flags": ""
 }
],
 "disruptions": null
}

Timetable
“values”
object

“line”
object

“stop”
object

“platform”
object

“direction”
object

“run”
object

List of timetable “values” objects starts here Note:
This is an abridged
version of the actual
response for illustrative
purposes only; the full
response returns more
results.

No disruptions
applicable

 Page 89 of 113

Disruptions

Version Number

2.3.0

Description

The Disruptions API returns information on planned and unplanned disruptions for selected
modes of transport, including the relevant line and direction data (where applicable).

Note The disruption information provided is the same information that is made
available by PTV through its apps; it is not an exhaustive list of all disruptions
affecting public transport at any given moment.

Request URL

base URL

/v2/disruptions/modes/%@?devid=%@&signature=%@

Parameters

modes = a comma separated list of modes of transport for which disruption information is
returned; possible values are:

general
metro-bus
metro-train
metro-tram
regional-bus
regional-coach
regional-train

where “general” represents disruption information affecting two or more modes

e.g. “regional-train,regional-coach” would return planned disruption information
for V/Line rail and coach services

Note If no modes are specified, the Disruptions API will return results for all modes.

devid = the user ID supplied in your email from PTV

signature = the customised message digest calculated using the method in the Quick start
guide

 Page 90 of 113

Response

Returns a list of JSON mode objects – i.e. objects named after the possible transport modes
which are passed: a “general” object, a “metro-bus” object, a “metro-train” object, a “metro-
tram” object, a “regional-bus” object, a “regional-coach” object and a “regional-train” object.

Each of these mode objects has a collection of disruption information objects within it (or, it
may be empty if there is no disruption information applicable at the time of the request).

Each of the disruption information objects has a list of “lines” objects embedded within it.

Each “lines” object includes a “direction” object.

Note The “lines” object may be empty if the disruption does not apply to any specific
line(s).

If the disruption affects both directions of a line, “direction” will return “null”.

For more information on the data structures, check out the JSON object structure.

disruption information objects have these attributes:

disruption_id numeric string
– the unique identifier of the disruption information
– e.g. “52179”

title string
– a headline or title summarising the disruption information
– e.g. “Belgrave: Major Delays to 20 min : to City due to train fault”

url string
– the url of the relevant article on the PTV website
– e.g. “http://ptv.vic.gov.au/live-travel-updates/”

description string
– a truncated version of the description of the disruption that appears on the
PTV website
– e.g. "Belgrave: Major Delays to 20 min : to City due to train fault"

status string
– a description of the disruption status (options include “Current” and
“Planned”)
– e.g. “Current”

type string
– a description of the type of disruption information (options include “Major
Delays”, “Service Information”, “Diversion”, “Planned Suspended”, “Planned
Closure” and “Planned Works”)
– e.g. “Major Delays”

publishedOn datetime in ISO 8601 UTC format
– the date and time the disruption information is published on the PTV
website
– e.g. “2016-02-29T02:34:37Z”

lastUpdated datetime in ISO 8601 UTC format
– the date and time the disruption information was last updated
– e.g. “2016-02-29T03:34:25Z”

 Page 91 of 113

fromDate datetime in ISO 8601 UTC format
– the date and time at which the disruption began (if current), or will begin (if
planned)
– e.g. “2016-02-29T02:33:00Z”

toDate datetime in ISO 8601 UTC format
– the date and time at which the disruption will end; returns “null” if this is
unknown
– e.g. “null”

“lines” objects have these attributes:

transport_type string
– the mode of transport serviced by the line
– e.g. “train”

route_type integer
– a number representing the mode of transport serviced by the stop, defined
as follows:
 0 Train (metropolitan)
 1 Tram
 2 Bus (metropolitan, regional and Skybus, but not V/Line)
 3 V/Line train and coach
 4 Night Bus (which replaced NightRider)
– e.g. “0”

line_id numeric string
– the unique identifier of each line
– e.g. “2”

line_name string
– the complete name of the line (i.e. includes the line number(s))
– e.g. "Belgrave"

line_number string
– the main line number that is presented to the public (i.e. not the “line_id”)
– e.g. “Belgrave”

line_name_short string
– the name of the line (i.e. doesn’t include the line_number)
– e.g. "Belgrave"

line_number_long string
– the complete line number, i.e. includes numbers of all paths
– e.g. “ ”

Note Night Train and Night Tram data are included in metropolitan train and tram
services data, respectively, whereas Night Bus is a separate route type.

Note For train lines, the line_number will be the same as the line_name (for
example, “Alamein”), while line_number_long will be empty.

 Page 92 of 113

“direction” objects have these attributes:

linedir_id numeric string
– unique identifier of a particular line and direction
– e.g. “20”

direction_id numeric string
– unique identifier of a direction
– e.g. “1”

direction_name string
– name of the direction of the service (e.g. “0” signifies “city”)
– e.g. "City (Flinders Street)"

service_time string
– the time of the specific service to which the disruption applies; returns null
if the disruption does not apply to any specific services or if it applies to
multiple services (time is in 24 hour clock format (HH:MM:SS) – Melbourne
time zone, i.e. AEDT/AEST)
– e.g. “null”

Example Use Case

Janelle’s final enhancement for the app is to provide disruption information to tourists for one or
more modes of public transport. She uses the Disruptions API.

Example request

http://timetableapi.ptv.vic.gov.au/v2/disruptions/modes/general, metro-
tram?&devid=4&signature=2CACC8A77A24452DEC110FD948906EBE4F10DC7B

 Page 93 of 113

Example response

{
 "general": []
 "metro-tram": [
 {
 "disruption_id": 53619,
 "title": "Service disruption for Route 35 (City Circle) tram: Wednesday 16 March to Sunday,
20 March 2016",
 "url": "http://ptv.vic.gov.au/live-travel-updates/article/service-disruption-for-route-35-city-circle-
tram-wednesday-16-march-to-sunday-20-march-2016",
 "description": "Due to the Melbourne International Flower and Garden Show at the Royal
Exhibition Building, Route 35 (City Circle) trams will have altered services from Wednesday 16
March to Sunday, 20 March 2016.",
 "status": "Current",
 "type": "Special Event",
 "publishedOn": "2016-03-08T20:11:15Z",
 "lastUpdated": "2016-03-15T16:00:03Z",
 "fromDate": "2016-03-15T16:00:00Z",
 "toDate": "2016-03-20T16:00:00Z",
 "lines": [
 {
 "transport_type": "tram",
 "route_type": 1,
 "line_id": 1112,
 "line_name": "35 - City Circle (Free Tourist Tram)",
 "line_number": "35",
 "line_name_short": "City Circle (Free Tourist Tram)",
 "line_number_long": "35",
 "direction": null
 }
]
 }
]
}

Mode object = Metro tram

Empty mode object = no
disruption information

Note:
This is an abridged
version of the actual
response for illustrative
purposes only; the full
response returns more
results.

“direction”
object

“lines”
object

 Page 94 of 113

Data Quality Statement

Data Source: PTV Timetable API

Institutional Environment: Data collector(s): Data is created and collected by or on behalf of
Victorian public transport train, tram and bus operators and by
Public Transport Victoria.

Collection authority: Public Transport Victoria

Data compiler(s): Public Transport Victoria (a government
agency) compiles the data.

Additional information: Timetable data changes frequently (for
example, over summer, or for planned works) and is updated on
an as-needs basis. Changes are advertised on the PTV website.
As the data is accessed through an API, the data released is
always up-to-date.

Relevance: Data topic: The data collected is the public transport timetable
(and associated data) for services in the state of Victoria (including
Melbourne metropolitan services).

Level of geography: The state of Victoria.

Key data items: Timetable, station/stop locations, line/route
paths, disruption information, stop facility data for metropolitan
train and V/Line train stations, real-time data for train, tram and bus
services where this is made available to PTV, and myki ticket
outlets.

Additional information: The PTV Timetable API does not
provide access to the PTV journey planner nor the HERE
Geocoder API (used by PTV to search addresses).

Timeliness: Data collected: The data is collected and is compiled for release
on an as-needs basis (this does not include real-time data which is
a service on demand).

Data available: The data is made accessible through the PTV
Timetable API, its availability is current.

Referenced period: Approximately 14 days.

Additional information: Public transport scheduled timetable,
real-time, stop/station, route and line data changes frequently. In
order to ensure you access the most up-to-date data, it is strongly
recommended you use the API dynamically.

Accuracy: Method of collection: The data is collected both manually and
through electronic file.

Data adjustments: The data contains interpolated times for stops
on bus routes that are not timing points.

Collection size: All public transport services in the State of
Victoria.

Additional information: The data released is consistent with the
data released by PTV through its apps.

 Page 95 of 113

Coherence: Consistency over time: The data is consistent over time in that
the same set of data (i.e. pertaining to services provided by public
transport operators) is consistently collected and released.

Consistency of jurisdictions: Unknown.

Time series: There is not a consistent time series for this data.
Timetable data changes frequently. PTV only keeps the current
timetable data (not including real-time data which is a service on
demand). PTV does not archive the old data once it has changed.

Interpretability: Context: The PTV Timetable API gives the public access to raw
public transport timetable data. It is not a journey planner service.

Accessibility: Additional information: PTV has also released other public
transport data through the DataVic website: www.data.vic.gov.au.

 Page 96 of 113

Getting help

Glossary
cluster is a group of geographically concentrated POIs

Cross Street is a street that intersects the street a tram or bus is travelling along (i.e. the Travel
Street)

disruption information is information on planned and unplanned disruptions to public transport
services consistent with the information delivered through PTV’s apps

GTFS is the General Transit Feed Specification

journey planner is a PTV service that allows people to plan journeys from one specific point to
another

landmark is a prominent or easily identifiable building or other place that is used to mark a
location, for example, a shopping centre, school, hospital, or park

line is a collection of route variations or paths that travel in the same direction

location is the physical place of a stop or outlet, described by the “location_name” attribute

outlet is a myki ticket outlet; this can be a retail outlet (i.e. shop) or a stop outlet (i.e. machine
located at a station, tram stop or bus stop)

platform a data object returned through the API made up of stop, line and direction information

POI stops and/or myki ticket outlets (collectively known as points of interest – i.e. POIs)

PTV GTFS dataset is the dataset of static timetable data and geographical information provided
by PTV in GTFS through the DataVic website

PTV Timetable API Data is the data accessed through the PTV Timetable API

PTV Timetable API Documentation is this publication

route is a collection of route variations or paths that travel in the same direction; in the data, a
“route” is called a “line”

real-time data are the times that a service is predicted to be at each of its stops based on the
location of the service at the time of the request and other factors

 Page 97 of 113

https://developers.google.com/transit/gtfs/

run is a specific service i.e. the transport type or mode, line, direction and time are all specified

stop is any of the following: a train station, tram stop, bus stop, or even a bus bay (e.g. at a
shopping centre)

stop facility information is information about stations that is consistent with the information
delivered through PTV’s apps

stopping pattern is the sequence of stops that a vehicle actually stops at on a line for any
particular run

Travel Street is the street that a tram or bus is travelling along at any given point in its run

UTC stands for Coordinated Universal Time; it is the primary time standard that regulates clocks
and time

Guide to understanding public transport data

This part of the document is designed to give you a crash course in public transport data
concepts and terms relevant to the API. It’s not meant to be a comprehensive guide to all public
transport data in the known universe.

We want to help you understand the data that is returned through the API so you can get the
most out of it.

We’ve created a fictional town called Somewhere (diagram 1) to help illustrate some of the key
concepts.

 Page 98 of 113

Note All diagrams in this section are for illustrative purposes only. They do not contain
any new information.

Public transport is easy to understand, right? There’s trains, trams and buses, some routes, a
timetable, some stations and stops…it’s all pretty simple stuff, right?

Well, yes. And also no.

Public transport seems pretty simple on the surface, but the data that underpins it is very
complicated. A lot of effort goes into turning public transport data into public transport information,
so that it’s easy to understand!

Let’s start with the concept of a stop. In our data, a stop can be a tram stop, a bus stop, a bus
bay at a shopping centre or junction, or a train station.

 Page 99 of 113

So all of the bus stops and the train stations in Somewhere (diagram 2) would be returned as
stops.

You can identify what kind of stop it is through the route_type attribute. These can be train, tram,
bus (includes metropolitan, regional and Skybus), V/Line train and coach, or Night Bus (which
replaced NightRider).

All stops have a unique identifier (stop_id attribute) and also a location name. Location names
describe as concisely as possible the physical location of the stop.

For train stations, the location name is the name of the station – for example, “Somewhere
Station”.

For tram and bus stops, location names are determined by a hierarchy of available stop
information. The hierarchy is:

Landmark > Cross Street > Travel Street

where Travel Street is the street the vehicle is travelling on, and Cross Street is a street that
intersects, or crosses, it.

Depending on the content of those fields in our database, the location name can be
Landmark_Travel Street, or Cross Street_Travel Street, or just Travel Street, together with the
suburb. Tram stop location names also include a stop number (which is the number that appears
on the signage at the stop or in the timetable; not the same as the “stop_id”).

 Page 100 of 113

Diagram 3 shows the bus stop location names in Somewhere.

On a map, a stop may appear to be a single point on a road (tram or bus) or building (train).
When you zoom in, however, you will notice that it may in fact be made up of several separate
stops, each with its own unique stop ID.

 Page 101 of 113

Stops and retail ticket outlets make up public transport points of interest (POIs). Ticket outlet
POIs also have a location name, as well as a business name. The town of Somewhere has two
ticket outlet POIs and 6 stop POIs (diagram 4).

Next let’s look at routes. The public knows train services by the name of the line (for example,
“Alamein line”), and tram and bus routes by a number, or a name. For example, the Route 112
tram or the Ballarat-Bendigo coach.

In public transport data, however, each route is made up of multiple route variations, which are
the geographic paths that a vehicle takes under the name of a route. Each route variation or path
is made up of a sequence of stops in a particular order (and a path may pass the same stop more
than once).

There can be different paths at different times of day, in different directions or when a vehicle
(usually a bus) deviates to a school or shopping centre.

A collection of route variations or paths make up a line. Mostly lines run in two directions,
however they sometimes run in a loop. In our data a line can be any of the following transport
type: train, tram, bus, V/Line rail and coach, or Night Bus.

 Page 102 of 113

In Somewhere, the Route 007 bus is a line made up of two paths (diagram 5).

The sequence of stops that a vehicle actually stops at on a path for any particular trip (also known
as a service or run) is known as a stopping pattern. For example, a vehicle may stop at all
stops on a particular path, or it may travel express and skip some stops on the path.

A timetable overlays times onto the movement of a vehicle on a particular run. The times take
into account the path that the vehicle takes, as well as the stopping pattern.

Variations are explained through the use of flags. A flag might indicate that a particular stopping
pattern or path is taken on school days only, for example, or only on a particular day of the week.
It can also indicate that reservations are required for a service or that the service is drop off or
pick up only at a particular stop.

 Page 103 of 113

The Route 007 bus that runs from Somewhere Shopping Centre to Somewhere Station has two
paths and three stopping patterns. These are indicated in the timetable for that route (diagram 6).

A variety of factors may cause disruptions to public transport services. These include planned
disruptions, such as planned road works or public events (for example, Anzac Day parade), or
unplanned disruptions, such as flash flooding caused by a storm. Public transport operators make
both planned and unplanned disruption information available to PTV.

We hope you now understand the main public transport data concepts a little better, to help you
get the most out of our API.

 Page 104 of 113

FAQs

Q. What does the PTV Timetable API do?

A. The PTV Timetable API provides a way to directly and dynamically access the most up-to-
date stop, line, disruption and timetable data held by PTV (including real-time data for train, tram
and bus services, where this is made available to PTV). By creating an API we are increasing the
opportunities for developers to take our data and re-use it in innovative ways.

Q. Who is the PTV Timetable API for?

A. Our API is for everyone who wants to take our data and re-use it in a web or smartphone app.

Q. Can I use the API to download all the timetable data?

A. The API is not designed to download all the timetable data at once. It works most effectively
when used dynamically within an app as that is the way to guarantee you’re always accessing –
and providing – the most up-to-date data.

To access static dumps of timetable data check out the PTV Timetable and Geographic
Information – GTFS dataset on the DataVic website.

Q. What is the difference between Version 2 and Version 3 of the PTV Timetable API?

A. Version 2 of the PTV Timetable API was developed in response to a number of PTV’s
operational requirements. The APIs were developed in an organic way to address specific
business needs and problems.

Version 3 of the PTV Timetable API has been designed in a holistic and more strategic fashion.
The APIs have been designed to return individual objects; the API structure is simplified and
terminology has been streamlined.

Q. What is the difference between the PTV Timetable API and the PTV GTFS dataset?

A. Both the PTV Timetable API and the PTV GTFS dataset provide public transport data that
includes static timetable data.

The PTV Timetable API provides dynamic access to public transport data, including real-time
data (where it is available), disruption information and retail ticket outlet data.

The PTV GTFS dataset, on the other hand, is a set of static public transport data files in the
GTFS format; it does not include real-time, disruption or retail ticket outlet data, but it does
include shapes data which can be used to create map routing.

The PTV Timetable API and the PTV GTFS dataset can be used independently or to complement
each other.

Q. Can I use outputs from the PTV GTFS dataset with the PTV Timetable API?

A. Yes – but only through the Specific Next Departures (GTFS Input) API and the Stop Facilities
(GTFS Input) API.

 Page 105 of 113

https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs
https://www.data.vic.gov.au/data/dataset/ptv-timetable-and-geographic-information-2015-gtfs

Q. Is real-time data available?

A. The PTV timetable API includes real-time data for metropolitan train, tram and bus services in
Melbourne (where this data is made available to PTV). As at the date of this document, work to
deliver real-time data for regional bus is continuing progressively.

PTV gets real-time data through a number of disparate systems via the public transport
operators.

Q. Is Night Network data available?

A. Yes. Night Train and Night Tram data are included in metropolitan train and tram services
data, respectively, while Night Bus is a separate route type.

Q. Why are some of my timetable results different to those the PTV journey planner
provides?

A. The PTV journey planner is coded with a number of business rules that reflect public transport
operational requirements, for example, requiring passengers to board a regional train half an hour
before it is due to leave.

The API accesses raw data, not journey planner results. Your timetable results will reflect the
actual scheduled time and/or the relevant real-time data.

Q. What programming languages can I use with the API?

A. The PTV Timetable API can work with all programming languages. The API uses a
programming language agnostic interface, so as long as the language you are using supports
HTTP protocols, you can use our API.

 Page 106 of 113

Appendix 1

Sample code for creating a signature
You’ll need to pass along a signature and a user ID – or “devid” – with every request using HTTP
GET.

The signature value is a HMAC-SHA1 hash of the completed request (minus the base URL but
including your user ID, known as “devid”) and the key.

Example in .net C#

The following is the .net C# code snippet for the signature calculation.

Note: key values are used for example purposes only.

string key = "9c132d31-6a30-4cac-8d8b-8a1970834799"; // supplied by PTV

int developerId = 2; // supplied by PTV

string url = "/v2/mode/2/line/787/stops-for-line"; // the PTV api method we want

// add developer id

url = string.Format("{0}{1}devid={2}",url,url.Contains("?") ? "&" : "?",developerId);

System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncoding();

// encode key

byte[] keyBytes = encoding.GetBytes(key);

// encode url

byte[] urlBytes = encoding.GetBytes(url);

byte[] tokenBytes = new
System.Security.Cryptography.HMACSHA1(keyBytes).ComputeHash(urlBytes);

var sb = new System.Text.StringBuilder();

// convert signature to string

Array.ForEach<byte>(tokenBytes, x => sb.Append (x.ToString("X2")));

// add signature to url

url = string.Format("{0}&signature={1}",url,sb.ToString());

// extra code to add base URL – the resultant url should be:

// http://timetableapi.ptv.vic.gov.au/v2/mode/2/line/787/stops-for-
line?devid=2&signature=D5474F344CDAA7B92F2253169F6C1D66C1A15001

 Page 107 of 113

http://timetableapi.ptv.vic.gov.au/v2/mode/2/line/787/stops-for-line?devid=2&signature=D5474F344CDAA7B92F2253169F6C1D66C1A15001
http://timetableapi.ptv.vic.gov.au/v2/mode/2/line/787/stops-for-line?devid=2&signature=D5474F344CDAA7B92F2253169F6C1D66C1A15001

Example in Java

The following is the Java code snippet for the signature calculation.

Note: key values are used for example purposes only.

 /**

 * Method to demonstrate building of Timetable API URL

 *

 * @param baseURL - Timetable API base URL without slash at the end (Example
:http://timetableapi.ptv.vic.gov.au)

 * @param privateKey - Developer Key supplied by PTV (((Example :"9c132d31-6a30-4cac-
8d8b-8a1970834799")

 * @param uri - Request URI with parameters(Example
:/v2/mode/0/line/8/stop/1104/directionid/0/departures/all/limit/5?for_utc=2014-08-15T06:18:08Z)

 * @param developerId- Developer ID supplied by PTV

 * @return Complete URL with signature

 * @throws Exception

 *

 */

 public String buildTTAPIURL(final String baseURL, final String privateKey, final String uri,

 final int developerId) throws Exception

 {

 String HMAC_SHA1_ALGORITHM = "HmacSHA1";

 StringBuffer uriWithDeveloperID = new StringBuffer().append(uri).append(uri.contains("?") ?
"&" : "?")

 .append("devid=" + developerId);

 byte[] keyBytes = privateKey.getBytes();

 byte[] uriBytes = uriWithDeveloperID.toString().getBytes();

 Key signingKey = new SecretKeySpec(keyBytes, HMAC_SHA1_ALGORITHM);

 Mac mac = Mac.getInstance(HMAC_SHA1_ALGORITHM);

 mac.init(signingKey);

 byte[] signatureBytes = mac.doFinal(uriBytes);

 StringBuffer signature = new StringBuffer(signatureBytes.length * 2);

 for (byte signatureByte : signatureBytes)

 {

 int intVal = signatureByte & 0xff;

 if (intVal < 0x10)

 Page 108 of 113

 {

 signature.append("0");

 }

 signature.append(Integer.toHexString(intVal));

 }

 StringBuffer url = new StringBuffer(baseURL).append(uri).append(uri.contains("?") ? "&" :
"?")

 .append("devid=" + developerId).append("&signature=" +
signature.toString().toUpperCase());

 return url.toString();

 }

 Page 109 of 113

Example in Objective C

The following is the Objective C code snippet for the signature calculation.

Note: key values are used for example purposes only.

-(NSURL*) generateURLWithDevIDAndKey:(NSString*)urlPath {

 NSString *hardcodedURL = @” http://timetableapi.ptv.vic.gov.au”;

 NSString *hardcodedDevID = @”developerID provided by PTV”;

 NSString *hardcodedkey = @”developer key provided by PTV”;

/* urlPath = @" http://timetableapi.ptv.vic.gov.au/v2/mode/2/line/787/stops-for-line";

*/

 NSRange deleteRange ={0,[hardcodedURL length]};

 NSMutableString *urlString = [[NSMutableString alloc]initWithString:urlPath];

 [urlString deleteCharactersInRange:deleteRange];

 if([urlString containsString:@"?"])

 [urlString appendString:@"&"];

 else

 [urlString appendString:@"?"];

 [urlString appendFormat:@"devid=%@",hardcodedDevID];

 const char *cKey = [hardcodedkey cStringUsingEncoding:NSUTF8StringEncoding];

 const char *cData = [urlString cStringUsingEncoding:NSUTF8StringEncoding];

 unsigned char cHMAC[CC_SHA1_DIGEST_LENGTH];

 CCHmac(kCCHmacAlgSHA1, cKey, strlen(cKey), cData, strlen(cData), cHMAC);

 NSString *hash;

 NSMutableString* output = [NSMutableString
stringWithCapacity:CC_SHA1_DIGEST_LENGTH * 2];

 for(int i = 0; i < CC_SHA1_DIGEST_LENGTH; i++)

 [output appendFormat:@"%02x", cHMAC[i]];

 hash = output;

 Page 110 of 113

 NSString* signature = [hash uppercaseString];

 NSString *urlSuffix = [NSString stringWithFormat:@"devid=%@&signature=%@",
hardcodedDevID,signature];

 NSURL *url = [NSURL URLWithString:urlPath];

 NSString *urlQuery = [url query];

 if(urlQuery != nil && [urlQuery length] > 0){

 url = [NSURL URLWithString:[NSString stringWithFormat:@"%@&%@",urlPath,urlSuffix]];

 }else{

 url = [NSURL URLWithString:[NSString stringWithFormat:@"%@?%@",urlPath,urlSuffix]];

 }

 return url;

}

 Page 111 of 113

Example in Python

The following is the Python code snippet for the signature calculation (our thanks to Serge in the
developer community for providing this after the initial API release in 2014).

Note: key values are used for example purposes only.

from hashlib import sha1

import hmac

import binascii

def getUrl(request):

 devId = 2

 key = '7car2d2b-7527-14e1-8975-06cf1059afe0'

 request = request + ('&' if ('?' in request) else '?')

 raw = request+'devid={0}'.format(devId)

 hashed = hmac.new(key, raw, sha1)

 signature = hashed.hexdigest()

 return 'http://tst.timetableapi.ptv.vic.gov.au'+raw+'&signature={1}'.format(devId, signature)

print getUrl('/v2/healthcheck')

 Page 112 of 113

Appendix 2

Release Notes

Cancelled train services

1. A new optional parameter applicable to metropolitan train services has been added to the
Broad Next Departures, Specific Next Departures and Specific Next Departures (GTFS
Input) APIs: includeCancelled is a boolean switch that indicates if cancelled services will
be returned (if any exist) in the response for these APIs. (Applicable to metropolitan train
services only; will have no effect on queries relating to other modes.

2. A new “status” attribute applicable to metropolitan train services is returned within the
“run” object, as part of the departure time “values” object returned by Broad Next
Departures, Specific Next Departures, Specific Next Departures (GTFS Input) and
Stopping Pattern APIs. Possible values are “scheduled”, “added”, “updated” and
“cancelled”. (Applicable to metropolitan train services only; returns “scheduled” for all
other modes.)

Train platform information

3. Two new attributes applicable to metropolitan train services – platform_number and
at_platform_now – are returned within the “platform” object, as part of the departure time
“values” objects returned by the Broad Next Departures, Specific Next Departures,
Specific Next Departures (GTFS Input) and Stopping Pattern APIs. (Applicable to
metropolitan train services only; return null and false respectively for all other modes.)

Security

4. The PTV Timetable API now supports a HTTPS endpoint.

Other changes

5. The attributes stop_mode_id, suburb, postcode, municipality, municipality_id,
primary_stop_name, road_type_primary, second_stop_name, road_type_second and
bay_nbr (returned by the Stop Facilities and Stop Facilities (GTFS Input) APIs) are
deprecated in the next version of the API.

 Page 113 of 113

	Introduction
	Hello and welcome
	Licence
	Ownership of intellectual property rights in the PTV Timetable API Documentation
	Don’t use our IP
	Creative Commons licence
	Don’t pretend to be us

	Disclaimer
	Your use is your responsibility

	What you get with the PTV Timetable API
	Do’s and don’ts
	Audience
	What’s in the document

	Need help?
	API
	Inputs
	Outputs

	Getting started
	First steps: getting your API key and user ID
	How to register for an API key and user ID
	Privacy

	Quick start guide
	How to calculate a signature
	Performing the Health Check
	Health Check request URL:
	Parameters
	Response output:
	Congratulations

	Quick reference guide
	Use case maps

	Overview
	Main features
	Stateless
	Format
	Output
	Security support (NEW)
	Compression support
	Authentication
	DateTime and time zone
	Versioning

	Structure
	Interface
	Errors
	Error trapping through Health Check
	HTTP status codes

	Reference
	JSON object structure
	Health Check
	Version Number
	Description
	Request URL
	Parameters
	Response
	Example request
	Example response

	Stops Nearby
	Version Number
	Description
	Request URL
	Parameters
	Response
	Example use case
	Example request
	Example response

	Transport POIs by Map
	Version Number
	Description
	Request URL
	Parameters
	Response
	Example use case
	Example request
	Example response

	Search
	Version Number
	Description
	Request URL
	Parameters
	Response
	Example use case
	Example request
	Example response

	Lines by Mode
	Version Number
	Description
	Request URL
	Parameters
	Response
	Example use case
	Example request
	Example response

	Stops on a Line
	Version Number
	Description
	Request URL
	Parameters
	Response
	Example use case
	Example request
	Example response

	Stop Facilities
	Version Number
	Description
	Request URL
	Parameters
	Response
	Example use case
	Example request
	Example response

	Stop Facilities (GTFS Input)
	Version Number
	Description
	Request URL
	Parameters
	Response

	Broad Next Departures
	Version Number
	Description
	Request URL
	Parameters
	Response
	Example use case
	Example request
	Example response

	Specific Next Departures
	Version Number
	Description
	Request URL
	Parameters
	Response
	Example use case
	Example request
	Example response

	Specific Next Departures (GTFS Input)
	Version Number
	Description
	Request URL
	Parameters
	Response

	Stopping Pattern
	Version Number
	Description
	Request URL
	Parameters
	Response
	Example use case
	Example request
	Example response

	Disruptions
	Version Number
	Description
	Request URL
	Parameters
	Response
	Example Use Case
	Example request
	Example response

	Data Quality Statement

	Getting help
	Glossary
	Guide to understanding public transport data
	FAQs
	Q. What does the PTV Timetable API do?
	Q. Who is the PTV Timetable API for?
	Q. Can I use the API to download all the timetable data?
	Q. What is the difference between Version 2 and Version 3 of the PTV Timetable API?
	Q. What is the difference between the PTV Timetable API and the PTV GTFS dataset?
	Q. Can I use outputs from the PTV GTFS dataset with the PTV Timetable API?
	Q. Is real-time data available?
	Q. Is Night Network data available?
	Q. Why are some of my timetable results different to those the PTV journey planner provides?
	Q. What programming languages can I use with the API?

	Appendix 1
	Sample code for creating a signature
	Example in .net C#
	Example in Java
	Example in Objective C
	Example in Python

	Appendix 2
	Release Notes
	Cancelled train services
	Train platform information
	Security
	Other changes

